

Dark Matter "Big Ideas" Gordan Krnjaic

ACE Workshop, Fermilab, June 15, 2023

The Cosmic Inventory

What is **dark matter** and does it have **friends**?

*new forces, radiation, additional structure etc...

Remarkable Evidence for Dark Matter

Independent, consistent observations spanning nearly all of space and time kpc-Gpc scales and redshifts $z\sim 3400 \to 0$

Holy Grail: extend knowledge to laboratory scales

Huge Range of Possible DM Masses

Traditional DM searches for WIMPs near the weak scale

Huge Range of Possible DM Masses

Traditional DM searches for WIMPs near the weak scale

Updated priors null results from LHC & WIMP direct-detection

Key priorities going forward

Identify theoretical milestones Propose new experimental searches

Which theories make sense and how do we test them?

Light DM vs. WIMPs : General Issues

LDM must be neutral under SM

Else would have been discovered @ LEP/Tevatron/LHC...

Light DM vs. WIMPs : General Issues

LDM must be neutral under SM

Else would have been discovered @ LEP/Tevatron/LHC...

LDM requires light new mediators

Overproduced without additional light, neutral "mediators"

$$\int_{\chi}^{w, z} \int_{f}^{f} \sigma v \sim \frac{\alpha^2 m_{\chi}^2}{m_Z^4} \sim 10^{-29} \text{cm}^3 \text{s}^{-1} \left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Lee/Weinberg '79

Light DM vs. WIMPs : General Issues

LDM must be neutral under SM

Else would have been discovered @ LEP/Tevatron/LHC...

LDM requires light new mediators

Overproduced without additional light, neutral "mediators"

$$\sigma v \sim \frac{\alpha^2 m_\chi^2}{m_Z^4} \sim 10^{-29} \text{cm}^3 \text{s}^{-1} \left(\frac{m_\chi}{\text{GeV}}\right)^2$$

Lee/Weinberg '79

LDM interactions renormalizable at accelerator energies Else rate too small — greatly simplifies space of possible theories **See Maxim's talk**

Equilibrium Narrows Mass Range! nonthermal nonthermal 10^{-20} eV $\sim 100 M_{\odot}$ $m_{Pl} \sim 10^{19} \text{ GeV}$ $m_p \sim \text{GeV}$ $m_e \sim \mathrm{MeV}$ m_Z < MeV > 100 TeV too much **Neff / BBN Light DM** "WIMPs" **Direct Detection High Energy Colliders Fixed Target Indirect Detection** Accelerators 9

Advantages of Accelerator Searches

Slide: Nikita Blinov

DM New Initiatives BRN Report (Kolb++) https://www.osti.gov/servlets/purl/1659757

DM New Initiatives BRN Report (Kolb++) https://www.osti.gov/servlets/purl/1659757

Batell, Pospelov, Ritz 0903.0363

Produce DM at in proton fixed target setup. DM resetters downstream

13

Dobrescu, Friuguele 1410.1566 Kahn, GK, Thaler, Toups 1411.1055 Izaguirre, Kahn, Krnjaic, Moschella 1703.06881 De Gouvea, Fox, Harnik, Kelly, Zhang 1809.06388 Berlin, Kling 1810.01879 De Nivertille, Threet L(ECIADS107525)

Neutrino Mode vs. Beam Dump Mode

Continuum production Similar in both modes

Uses full beam energy Important for heavy X

Thickness irrelevant if greater than rad. length

MiniBooNE Collaboration arXiv1807.06137

MiniBooNE-DM

MiniBooNE-DM Collaboration 1807.06137

First ever dedicated accelerator search for light DM scattering

8 GeV proton beam, 2e20 POT Uses timing to reduce NC-BG

Beats 20+ year limits from theorist Reinterpretations of E137/LSND

Approaching key thermal DM production milestones

Future DM Reach @ FNAL Neutrino Experiments

Target/ECAL/HCAL

 $\chi \bar{\chi}$

Invisible

Future DM scatter reach for @ FNAL neutrino experiments

Buonocore, Frugiuele, deNiverville 1912.09346

Same strategy probes Inelastic DM decays

Izaguirre, Kahn, GK, Moschella 1703.06881 Batell, Berger, Darme, Frugiuele, 2106.04584

DM @ DUNE/PRISM

DUNE near detector (on-axis) and PRISM (off axis) sensitive to thermally produced DM in early universe

DM production through meson decay — favorable S/B 36 m off axis

De Romeri, Kelly, Machado 1903.10505

DM @ Coherent Captain Mills (LANL)

800 MeV proton beam ~ 1e22 POT luminosity

DM production from neutral pion decay

DM rescattering downstream in 10 ton LAr scintillating detector

Millicharged particles: ArgoNeuT+SENSEI

QED interactions in beam dump can produce millicharged particles which can be detected with LAr detector(ArgoNeuT) or skipper CCD (SENSEI) downstream

DM New Initiatives BRN Report (Kolb++) https://www.osti.gov/servlets/purl/1659757

Missing Energy/^{a)}Momentum Strategy

Missing Energy/Momentum Strategy

Berlin, Blinov, GK, Schuster, Toro arXiv: 1807.01730

Andreas et. al. 1312.3309 NA64 Collaboration 1906.00176 Gninenko, Krasnikov, Mateev 2003.07257

NA64 currently running @ CERN

M³: Muon Missing Momentum @ FNAL

Kahn, GK, Tran, Whitbeck 1804.03144, LDRD supported

M³: Muon Missing Momentum @ FNAL

Covers predictive thermal production targets for muon-philic DM. Including models that also explain g-2 anomaly

Holst, Hooper, GK 2107.09067 PRL

Kahn, GK, Tran, Whitbeck 1804.03144, LDRD supported

🛟 Fermilab

https://www.osti.gov/servlets/purl/1659757

Rich Dark Sectors @ FNAL Sea/SpinQuest

Proton spectrometer 120 GeV Main Injector Designed to study muon Drell-Yan production

~1e20 POT w/ proposed installation of downstream ECAL

Sensitivity to rich dark sectors with ~ meter scale decays: dark photons, axion-like particles, inelastic DM

Berlin, Gori, Schuster, Toro 1804.00661

Muonic Forces & g-2 @ FNAL SpinQuest

Proposed bump search for BSM dimuon decays at proton spectrometer Parasitic on existing SpinQuest @ FNAL experiment Coverage of low-mass BSM solutions to muon g-2

Forbes, Herwig, Kahn, GK, Suarez, Tran, Whitbeck 2212.00033

🚰 Fermilab

DM search effort has vastly expanded in scope Broader priors motivate wider mass range

"Big Ideas" for DM searches @ fixed targets

- 1) Beam Dumps (DM re-scatters in downstream detector)
- 2) Missing Energy/Momentum
- 3) Proton beam spectrometers

DMNI funding has kicked off new generation of fixed target searches First round funding for LDMX (R&D) and Coherent Captain Mills (currently running)

Concluding Remarks

Experiment	Facility	Beam Config	Beam Energy	Det Signature	Timeline	Refs.
US-based						
HPS	CEBAF @ JLab	electron FT	1-6 GeV	LLP	running	section 3.15, [16]
COHERENT	SNS @ ORNL	proton FT	1 GeV	rescattering	running	section 4.5, [17]
ССМ	LANSE @ LANL	proton FT	0.8 GeV	rescattering	running	[18]
SpinQuest/DarkQuest	MI @ FNAL	proton FT	120 GeV	LLP	construction, proposed upgrade	section 3.5, [19]
LDMX	LESA @ SLAC	electron FT	4-8 GeV	Missing X	R&D funding, 2024	section 3.17, [20]
BDX	CEBAF @ JLab	electron BD	11 GeV	rescattering, Millicharged	proposed	section 3.1, [21]
JPOS	CEBAF @ JLab	positron FT	11 GeV	Missing X	proposed	section 3.16, [22]
PIP-II BD	PIP-II @ FNAL	proton FT	1 GeV	rescattering, LLP	proposed (2029)	section 3.23, [23]
SBN-BD	Booster @ FNAL	proton BD	8 GeV	rescattering	proposed (2029)	[24]
REDTOP	TBD	proton FT	1-5 GeV	Missing X, LLP, Prompt	proposed	section 3.25, [25]
M ³	MI @ FNAL	muon FT	15 GeV muons	Missing X	proposed	[26]
FNAL-µ	muon campus @ FNAL	muon FT	3 GeV	LLP	proposed	section 3.13, [27]
International						
Belle-II	SuperKEKB @ KEK	e+e- collider	150 MeV	Missing X, LLP, Prompt	running	section 3.2, [28]
CODEX-β	LHC @ CERN	pp collider	6.5-7 TeV	LLP	construction (2023)	section 3.4, [29]
CODEX-b	LHC @ CERN	pp collider	6.5-7 TeV	LLP	proposed (2026)	section 3.3, [30]
LHCb	LHC @ CERN	pp collider	6.5-7 TeV	LLP, Prompt	running, future upgrade planned	section 3.18, [31]
NA62	SPS-H4 @ CERN	proton BD	400 GeV	LLP	dedicated running planned	[32]
FASERnu	LHC @ CERN	pp collider	6.5-7 TeV	rescattering	running	section 3.9, [33]
milliQAN	LHC @ CERN	pp collider	6.5-7 TeV	Millicharged	running	section 3.19, [34]
DarkMESA	MESA @ Mainz	Electron FT	150 MeV	rescattering, LLP	construction (2023)	section 3.6
NA64-e	SPS-H4 @ CERN	electron FT	100-150 GeV	Missing X, Prompt	running	section 3.20, [35]
NA64-mu	SPS-M2 @ CERN	muon FT	100-160 GeV	Missing X	commissioning	section 3.21
NA64/POKER	SPS-H4 @ CERN	positron FT	100 GeV	Missing X	planned (2024)	section 3.24, [35]
PIONEER	πE5 @ PSI	proton FT	10-20 MeV pions	Prompt	planned (2028)	section 3.22, [36]
FASER2	FPF @ CERN	pp collider	6.5-7 TeV	LLP	proposed (2029)	section 3.8 [37]
FORMOSA	FPF @ CERN	pp collider	6.5-7 TeV	Millicharged	proposed (2029)	section 3.14, [38]
FASERnu2	FPF @ CERN	pp collider	6.5-7 TeV	rescattering	proposed (2029)	section 3.10, [33]
FLArE	FPF @ CERN	pp collider	6.5-7 TeV	rescattering	proposed (2029)	section 3.12, [39]
SND@LHC	LHC @ CERN	pp collider	6.5-7 TeV	rescattering	running	section 3.27, [40]
Advanced SND@LHC	FPF	pp collider	6.5-7 TeV	rescattering	proposed (2029)	section 3.27, [40]

Many new existing/proposed experiments!

Ilten, Tran et. al. 2206.04220

Backup Slides