Feebly Interacting Particles review Maxim Pospelov U of Minnesota and FTPI

The Search for Feebly Interacting Particles

UNIVERSITY OF MINNESOTA Driven to Discover umn.edu Gaia Lanfranchi, Maxim Pospelov, Philip Schuster

Published in: Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313¹

LHC: Higgs, but no New Physics at high energy thus far (?!)

- No hints for any kind of new physics.
 Strong constraints on SUSY, extra dimensions, technicolor resonances, new Z' etc.
- There is no clear theoretical winner in the "top-down" approach. There is not a single theoretical model that has unambiguous theoretical predictions.
- There is no "clear practical guidance" that can be derived from the Higgs naturalness problem. 2

Clues for new physics

1. Precision cosmology: 6 parameter model (A-CDM) correctly describes statistics of 10⁶ CMB patches. $\int_{u^{0}} \int_{u^{0}} \int_{u^{0}}$

2. Neutrino masses and mixing: Give us a clue [perhaps] that

2000

M1 = 175.3 GeV

106 103 1000 1012 1014 1016 103

1000

there are new matter fields beyond SM. Some of them are not charged under SM.

3. Theoretical puzzles: Strong CP problem, vacuum stability, hints on unification, smallness of m_h relative to highest scales (GUT, M_{Planck})

4. "Anomalous results": muon g-2, SBN neutrino anomalies, Hubble constant tension etc.

Search for New Physics

In 2012-2013 LHC experiments discovered a new particle (Higgs boson) and a new force (Yukawa force). What do we know about forces in nature ?

Light particles change $\sigma(E)$

Light particles induced interactions do not benefit from going to large energies the same way as e.g. interactions from heavy particles

High intensity is a key to probe light particles with small couplings (FIPs)

SM as an Effective Field Theory in the presence of FIPs

Typical BSM model-independent approach is to include all possible BSM operators + light new states explicitly.

 $L_{SM+BSM} = -m_H^2 (H^+_{SM}H_{SM}) + \text{all dim 4 terms } (A_{SM}, \psi_{SM}, H_{SM}) + (W.\text{coeff. } /\Lambda^2) \times \text{Dim 6 etc} (A_{SM}, \psi_{SM}, H_{SM}) + \dots$ all lowest dimension portals $(A_{SM}, \psi_{SM}, H, A_{DS}, \psi_{DS}, H_{DS}) \times \text{portal couplings}$

+ dark sector interactions (A_{DS} , ψ_{DS} , H_{DS})

SM = Standard Model

DS – Dark Sector

Minimal portal interactions

Let us *classify* possible connections between Dark sector and SM $H^{*}H(\lambda S^{2} + A S)$ Higgs-singlet scalar interactions (scalar portal) $B_{\mu\nu}V_{\mu\nu}$ "Kinetic mixing" with additional U(1)' group (becomes a specific example of $J_{\mu}^{\ i}A_{\mu}$ extension) *LH N* neutrino Yukawa coupling, *N* – RH neutrino $J_{\mu}^{\ i}A_{\mu}$ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the *LHN* portal...

Dim>4

 $J_{\mu}^{A} \partial_{\mu} a / f$ axionic portal

$$\mathcal{L}_{\text{mediation}} = \sum_{k,l,n}^{k+l=n+4} \frac{\mathcal{O}_{\text{med}}^{(k)} \mathcal{O}_{\text{SM}}^{(l)}}{\Lambda^n},$$

Owing to small couplings, such particles represent "dark sector" 7

Motivations for Heavy Neutral Leptons

Participates in the neutrino mass generation via see-saw

$$m_{\nu,\mathrm{D}}\bar{\nu}\nu \longrightarrow y_{\nu}\bar{N}\nu H + (h.c.)$$

$$m_{\nu,\mathrm{M}}\bar{\nu}\nu \longrightarrow (y_{\nu})^{2}(\nu H)^{c} \times \frac{1}{m_{N}} \times (\nu H) + (h.c.)$$

- A cornerstone/pilar for the generation of the baryon asymmetry of the Universe via leptogenesis (lepton number violation by HNL and B+L violation by SM sphalerons). A sub-EW mass HNL version of leptogenesis is also available (ARS mechanism).
- Can be a "freeze-in" DM with masses in 1 keV 100 keV range, and in the presence of other dark sector particles can easily be DM.
- Maybe contributing to the X-ray excess at ~ 3.5 keV?

Motivations for Axion-like particles

 Initially suggested (QCD axion) to solve the strong CP to problem by relaxing the effective QCD vacuum angle theta to zero.

$$\theta_{QCD} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \longrightarrow \left(\theta_{QCD} + \frac{a}{f_a} \right) G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$$

- Can easily constitute the entirety (or a fraction) of cold dark matter.
- More massive versions of ALPs could still provide [limited] solution to the strong CP, while being stronger coupled and amenable to beam dump searches.
- Maybe contributing to various "anomalous stellar energy loss signals"?

Motivations for dark vectors and dark scalars

 Dark scalar is the only object that can have a super-renormalizable portal dim=3 to the Higgs boson. Can be connected to the Higgs mass naturalness via the so-called relaxion mechanism (selforganized criticality).

$$(H^{\dagger}H) \times m_{H}^{2} \longrightarrow (H^{\dagger}H) \times (m_{H}^{2} + c_{1}S + c_{2}S^{2} + ...)$$

- Dark scalar can help develop the 1st order EW phase transition and with extra CP-violation (provided e.g. by additional Higgs doublet) can lead to successful EW baryogenesis.
- Light dark photons can result from "neutral naturalness" approach
- Dark vectors/scalars can be DM themselves either freeze-in or oscillate like axion. Can be mediators for light WIMP models.
- Maybe behind certain anomalies (e.g. $L_{mu} L_{tau}$ dark vector can "correct" muon g-2.)

"Simplified models" for light DM some examples

• Scalar dark matter talking to the SM via a "dark photon" (variants: L_{mu} - L_{tau} etc gauge bosons). With $2m_{DM} < m_{mediator}$.

$$\mathcal{L} = |D_{\mu}\chi|^{2} - m_{\chi}^{2}|\chi|^{2} - \frac{1}{4}V_{\mu\nu}^{2} + \frac{1}{2}m_{V}^{2}V_{\mu}^{2} - \frac{\epsilon}{2}V_{\mu\nu}F_{\mu\nu}$$

• Fermionic dark matter talking to the SM via a "dark scalar" that mixes with the Higgs. With $m_{DM} > m_{mediator}$.

$$\mathcal{L} = \overline{\chi}(i\partial_{\mu}\gamma_{\mu} - m_{\chi})\chi + \lambda\overline{\chi}\chi S + \frac{1}{2}(\partial_{\mu}S)^2 - \frac{1}{2}m_S^2S^2 - AS(H^{\dagger}H)$$

After EW symmetry breaking *S* ("dark Higgs") mixes with physical *h* and can be light and weakly coupled provided that coupling A is small.

Take away point: these models have both stable (DM) and unstable (mediator) light weakly coupled particles.

Models vs Experiments

Vector

scalar

Benchmark Cases (MP and PBC, 2018)

- 1. Dark photon
- 2. Dark photon + light dark matter
- 3. Millicharged particles
- 4. Singlet scalar mixed with Higgs
- 5. Quartic-dominated singlet scalar
- 6. HNL, e-flavour dominance
- 7. HNL, μ -flavour dominance
- 8. HNL, τ -flavour dominance
- 9. ALPs, coupling to photons
- 10. ALPs, coupling to fermion
- 11. ALPs, coupling to gluons

Experimental proposals, mostly CERN

SHiP *Beam Dump* Flavour, possible BD NA62+ FASER LHC add-on MATHUSLA large LHC add-on Codex-B LHC add-on MilliQan LHC add-on NA64 missing momentum **KLEVER** flavour fixed target REDTOP IAXO axion exp ALPs-II axion exp

I hope that in the end, a clear strategy for building up CERN intensity frontier program will emerge, with new sensitivity to sub-EW scales 12

 \mathbf{v}

ALP

FIP physics center idea

- The "FIP Physics Center" is the place in PBC where FIP physics is discussed (BSM-WG mostly focused to discuss experimental issues)

- The FPC is the natural portal to external FIP-related activities

Slides from G. Lanfranchi

9

FPC steering group

- Martin Bauer (Durham U., UK) theorist, main interest: axions/ultra light bosons
- James Beacham (Duke U., US) experimentalist, ATLAS, convener LLP@LHC WG, connection to the LHC
- Albert De Roeck (CERN) experimentalist, CMS, convener LLP@LHC WG, connection to LHC &US neutrino community
- Marco Drewes (Louvain U., B) theorist, main interest: HNLs
- Maurizio Giannotti (Barry U., US) theorist, main interest: FIPs in stellar evolution.
- Gian Francesco Giudice (CERN) head of CERN Theory department and CERN representative for EuCAPT;
- Stefania Gori: (California U.) theorist, Convener of the RF6 (Dark sector at high intensity) Snowmass WG;
- Pilar Hernandez (Valencia, ES): theorist, main field: heavy neutral leptons, but she is very broad;
- Igor Irastorza (Zaragoza, ES) experimentalist, IAXO spokesperson, connection to axion experiments
- Joerg Jaeckel (Heidelberg, D) theorist, main interest: axions. Convener of CF2 in Snowmass (wavelike DM)
- Felix Kahlhoefer (Aachen U., D) theorist, main interest: axions/ALPs
- Gordan Krnjaic (FNAL & Chicago U., US): theorist, FNAL: main interest: light DM and related models.
- Gaia Lanfranchi (INFN, IT): experimentalist, FIPs @ extracted beam lines
- Jacobo Lopez-Pavon (Valencia U., ES) theorist, main interest: HNLs
- Jocelyn Monroe (Royal Halloway U, London, UK) experimentalist, connection to DM direct detection community.
- Silvia Pascoli (Bologna U., IT) theorist, main interest: neutrinos & HNLs. APPEC deputy chair and EuCAPT.
- Maxim Pospelov (Minneapolis U. & Perimeter I.): theorist: wide range of FIPs
- Joshua Ruderman (NYU, US) theorist, main interest: astroparticle
- Philip Schuster (SLAC, US) theorist. Main interest: light DM and related mediators, connection to US extracted beams
- Mikhail Shaposhnikov (EPFL, CH) theorist: worldwide reference for HNLs.
- Jessie Shelton (Urbana U., US): theorist, main interest: astroparticle.
- Yevgeni Stadnik (Tokyo U., JP) theorist, main interest: ultra-light FIPs
- Stefan Ulmer (Riken, JP), experimentalist (AD), connection to ultra-low FIPs

Several more participants have been added: M. Hostert, J. Klaric,

+ representatives of PBC experiments related to FIP physics 10

Connection to experiments

Future direction – new intensity experiments at CERN

To improve on sensitivity to light dark matter in beam dump/fixed target experiments.

New experimental facilities at CERN:

- Provide capability to collect over 10²⁰ of 400 GeV protons on target enabling important intensity frontier experiments (SHiP) enabling best sensitivity to HNLs
- Provide new capabilities in precision studies of Kaon decays, including important "clean" modes (NA62, HIKE):
 K⁺ → π⁺νν̄; K_L → π⁰νν̄ as well as new opportunities for the short baseline beam dumps (SHADOWS)
- Provide new opportunities with studies of prompt neutrinos (including v_{τ} and fixed target studies of rare decays of tau and D mesons).

Important features of new facilities and experiments

- High intensity O(>10²⁰ POT) & High energy, E=400 GeV. (Compare e.g. to 800 GeV CCFR/NuTeV where O(10¹⁸ POT) was collected.)
- Copious amounts of s, c, b quarks, and tau-mesons can be produced, enabling studies of their very rare decay modes.
- A much shorter baseline than before, 100 m or less (with NuTeV, CHARM~ O(km)). Enables access to much shorter-lived relics.
- Proton-nucleus collision followed by an absorber creates a "beam dump of everything". (Over 10²¹ hard gamma and positrons, over 10¹⁶ muons going through the absorber). *This is not yet a fully investigated advantage*.

Search for Heavy Neutral Leptons

- Production channel is through prompt charm decay
 pp → c cbar → HNL.
- Detection is through HNL occasional decay via small mixing angle U, with charged states in the final state, e.g. π⁺μ⁻, π⁻μ⁺, etc.
- Decays are often slow, so that the sensitivity is proportional to (Mixing angle)⁴.
 Massive improvements over old ressults possible.

Search for Heavy Neutral Leptons

- Decay length *c τβγ* scales as (m_{HNL})⁻⁶. One order of magnitude in mass encompasses 6 orders of magnitude of L_{decay}.
- At above ~5 GeV there is a nice complementarity with LEP/LHC searches.
- In some DS models (e.g. with gauged B-L), even a see-saw region can be probed via Z' mediated production.
- Some models may reduce sensitivity via HNL→ dark states. In that case K→µN and eN pairs is an important tool.

Constraints and future sensitivity to Dark Photons

O(few GeV) mass, and $\epsilon \sim 10^{-7}$ can be probed using experiments at proposed BDF facility.

Non-conserved currents will be sensitive to high-mass scales through loops

• It is well known that there is an enhancement of non-conserved currents inside loops leading to FCNC. The key – access to momenta $\sim m_W$ and m_t .

• For a fully conserved current, like couplings of dark photon, Amplitude $\sim G_F m_{meson}^2$ For a non-conserved current, such as Higgs-mixed scalar Amplitude $\sim G_F m_{top}^2$

Constraints on Higgs-mixed scalars

Possible future improvements at NA62, SHiP, possibly SNB experiments, and new proposals such as MATHUSLA, CODEX-B, FASER etc. Notice the complementarity of the Kaon rare decays and beam dump studies.

Dark Matter through Dark Photon portal

- At the moment, neutrino and beam dump experiments provide best sensitivity in the light mass range.
- Beam dump scaling, ε⁴, is eventually to be overtaken by missing energy/momentum experiments with ε² scaling.
 (Newer NA64 results cross into relic density motivated territory)
- There is a nice complementarity with direct detection experiments that have a low detection threshold.

Physics "benefits" of FIP searches

- New dedicated/novel experiments are designed, new run modes for existing experiments are implemented (NA64, LDMX, light dark matter direct detection, Miniboone beam dump mode run)
- Old data from past experiments are being re-analyzed.
- New FIP-motivated signatures in existing experiments are being explored (Here the list is enormous. E.g. latest from NA62: search for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^- decay$)
- Benchmark/portal framework provided some insurance that no interesting physics is missed. (It would be nice to expand it to the sub-eV new physics and formulate a new set of benchmarks there.)

New HNL constraints from old LSND

• With Y. Ema, Z. Liu and K. Lyu, e-Print: 2306.07315 [hep-ph]

• Sometimes a pair will look like a single electron \rightarrow contributes to *v*-*e* scattering sample at LSND. Strong acceptance penalty.

- Even with the penalty, LSND provides novel constraints due to enormous POT.
- PIP2 beam dump could improve on these constraints.

Conclusions

- Dark Sectors / FIPs represent a well-motivated strategic direction in New Physics studies at the intensity frontier experiments.
- There is an elaborate theoretical and experimental effort to study "most reasonable" models of dark sector/FIPs, systematized in e.g. PBC working group.
- New physics opportunities using the CERN SPS beam enables to study dark sectors in the cutting-edge beam dump style experiments (record POT, enough energy for D, B mesons, very short baseline, "beam dump of everything"). It also enables rare K decay studies with unprecedented intensity Kaon beam.
- *New HNL limits from old experiment (LSND) are presented.
 More can be done at PiP-II.