
Fermilab (B) L.S. DEPARTMENT OF Office of Science

Parameters for Muon Programs in ACE

Robert Bernstein/Sergo Jindariani/Ditkys Stratakis ACE Workshop 15 June 2023

Starting Point

Acceleration Proton Driver Front End Collider Ring Cooling E_{CoM}: Higgs Factory nitial 6D Cooling Charge Separato Decay Channel Buncher Phase Rotator **MW-Class Targe** Final Cooling SC Linac to Accumulator Buncher Combiner 6D Cooling 6D Cooling Capture Sol ~10 TeV Merge Bunch Accelerators: Linacs, RLA or FFAG, RCS

Some Potential Overlaps

- Proton Source
- Production Solenoid at ~ 1MW
- Compressor Ring to rebunch Linac

in order along the chain

• FFA for a muon storage ring

Today: let's write down some numbers and see where it leads.
don't quote me on any of this as final! this is a workshop!!

Proton Source

Proton Source	Mu2e-II	AMF	Muon Collider	
bunch length	~200 nsec	short	1-3 ns	
bunch spacing	~1695 ns	12.2 ns	5-10 Hz	
macrostructure	CW	CW	Pulsed	
beam energy	800 MeV	800 MeV–4 GeV	5–15 GeV	
beam power	100 kW	1 <i>MW</i>	2–4 MW	
 Mu2e-II = 1695 ns	 12.2 ns	AMF		ldred def'n of CW vorkshop)
	CW		CW	1 /
	time		time	
				🗰 🛟 Fermilab

Compressor Ring

Proton Source	AMF	Muon Collider
bunch length	10 ns	1–3 ns
bunch spacing	100 Hz	5–15 Hz
protons/bunch	78 x 10 ¹² - 78 x 10 ¹³	3 x 10 ¹⁴
macrostructure	CW	Pulsed
beam energy	800 MeV–4 GeV	5–15 GeV
beam power	1 <i>MW</i>	2–4 MW

This is the output; input is PIP-II proton source

• Note: phase rotation occurs before cooling in the MuCol. Be careful about "cartoons."

Proton Source	AMF	Muon Collider
dp/p	~1%	Factor of 2 energy gain
central momentum	20 MeV/c	Few GeV – 4 TeV
macrostructure	100Hz - 1kHz	5 Hz, 2 counter-rotating bunches
beam power	1 <i>MW</i>	30 kW – 12 MW

Production Solenoid

Proton Source	Mu2e-II	AMF	Muon Collider
bunch length	<200 nsec	<200 nsec	1–3 ns
bunch spacing	~1695 ns	10 msec (100 Hz)	5 – 10 Hz
macrostructure	CW	CW	Pulsed
beam energy	800 MeV	800 MeV–4 GeV	5 – 15 GeV
beam power	100 kW	1 <i>MW</i>	2 – 4 MW

this is probably the most obvious overlap. Mu2e-II works here too.

Questions From P5: AMF Answers

- How does the experiment make use of the ACE beam?
 - Uses 2 GeV Spigot (CW) and Pulsed for muonium-antimuonium oscillations
- Is the experiment uniquely enabled by the ACE upgrades?
 - Having a higher energy (1-3 GeV vs 800 MeV) has some benefits. The Booster Replacement is *not* necessary. The 2 GeV accumulator ring could be designed to be the compressor ring required for AMF.
- Can this experiments be performed elsewhere?
 - It is possible that J-PARC could use their RCS and MR but much of what is proposed for AMF would have to be built there. PSI only has a CW beam at 51 MHz. Although PSI's target is at 1 MW, only about a percent at most is available for the HEP program, so it could do the decay experiments (albeit not as the statistical power of FNAL) but not the conversion experiment.
- What particular accelerator components or capabilities are necessary?
 - compressor for rebunching PIP-II protons, production solenoid and pion production target, FFA for muons that can deliver pulses for conversion or "continuous" for decay experiments, then injection/extraction components.

Questions from P5 (2)

- What proton energies are needed?
 - 800 MeV to a few GeV
- What proton quantities are needed?
 - $\mathcal{O}(10^{26})$ (SES of 10^{-20} x 10% detector acceptance x $10^{-3}\mu/p$ x 1% transfer efficiencies)
- What time structure is needed? (bunch length, train structure)
 - depends on where you are in the chain. The PIP-II proton source works as a start.
- Can the experiment be performed with 800 MeV protons from PIP-II?
 - Yes. 2-3 GeV is better but this is partly dependent on the Production Solenoid magnetic field. AMF wants to stay below antiproton threshold at 5 GeV if possible.

Common Questions

- With these sets of parameters, what can be used from Mu2e-II or AMF as R&D for the Muon Collider?
 - Production Solenoid
 - how much are the production solenoid designs similar?
 - what can we learn about targeting?
 - what can we learn about protecting a superconductor
 - are the superconductors for both the same?

- FFA

- is there common technology for phase rotation?
- is a racetrack FFA acceptable for both?
- how can we extract μ^- with one time structure (every 1000 ns or so) for conversion and μ^+ with another (as constant as possible) from the FFA? Is such a ring still useful for the MuCol?
- Compressor Ring
 - what is the physics purpose of the current 2 GeV ring? Does it make sense to turn it into a compressor ring for AMF? Or do we need two rings?

Today: Mu2e-II, AMF and MuC are in this together

- Overlap in Production Solenoid/Target Station:
 - build a team
 - learn about megawatt class targets
 - validate engineering estimates:
 - effort at Mu2e-II and AMF will inform MuC design
 - does it make sense to just build MuC solenoid for AMF?
 - No. Aperture is very expensive.
 - is using forward production in AMF sensible? Maybe.
- Overlap in Compressor Ring
 - build a team
 - code validation
 - similar at a broad scale but parameters about x10 different; some things easier, some harder
 - again, validating engineering estimates
- Overlap in FFA
 - not that much overlap, but a lot of good discussion about design

