Muon Colliders & Dark Sectors Discussion Section

Cari Cesarotti & Yoni Kahn

How can we search for Dark Sectors at Muon Colliders?

- What can we do with higher energy? 3 TeV 10 TeV 100 TeV?
- How does the cleaner environment of the muon collider facilitate searches?
- What sort of beam intensity do we need to surpass other experiments?
- What can be done at beam dumps? At what energy? What material?
- Can we just use low energy things from the LINAC (400 MeV, 800 MeV, 8 GeV) or booster (8 GeV)?

What Dark Sectors are of Interest?

- What kind of portals are enhanced with muon colliders?
- What signals do we get from minimal models that can be seen at muon colliders?
- What are the best production mechanisms for new physics?

• What models would couple more strongly to 2nd generation or EW bosons?

Slides from Talks

A 10 TeV muon collider would be a super-Higgs factory, producing ~ 10 million Higgs bosons with 10 /ab:

EFT ladder

Marco Valente

· Promising R&D technologies:

hybrids, monolitic CMOS,

LGADs, and more...

08533 C!
8

Slides from Talks

Example CERN Locations

Consider nTOF-like beam from PS for cooling experiment:

Layout

1 pulse of 10¹³ p at 20 GeV per 1.2 s
i.e. 27 kW, maybe O(100kW) possible

If SPL were, installed could use its beam, e.g. 5 GeV, 4 MW

What could be done at FNAL?

MInternational UDN Collider Collaboration

D. Schulte

Mu

Daniel Schulte

Slides from Talks

SM as an Effective Field Theory in the presence of FIPs

Typical BSM model-independent approach is to include all possible BSM operators + light new states explicitly.

 $L_{SM+BSM} = -m_{H^2} (H^+_{SM} H_{SM}) + all \dim 4 \text{ terms } (A_{SM}, \psi_{SM}, H_{SM}) +$

(W.coeff. $/\Lambda^2$) × Dim 6 etc (A_{SM} , ψ_{SM} , H_{SM}) + ...

all lowest dimension portals $(A_{SM}, \psi_{SM}, H, A_{DS}, \psi_{DS}, H_{DS}) \times$ portal couplings

+ dark sector interactions $(A_{DS} \psi_{DS} H_{DS})$

SM = Standard Model

DS – Dark Sector

Maxim Pospelov

Minimal portal interactions

Let us *classify* possible connections between Dark sector and SM $H^{+}H(\lambda S^2 + AS)$ Higgs-singlet scalar interactions (scalar portal) "Kinetic mixing" with additional U(1)' group $B_{\mu\nu}V_{\mu\nu}$ (becomes a specific example of $J_{\mu}^{i}A_{\mu}$ extension) neutrino Yukawa coupling, N - RH neutrino LHN $J_{\mu}^{i}A_{\mu}$ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the LHN portal... Dim>4

 $J_{\mu}^{A} \partial_{\mu} a / f$

.....

axionic portal

$$\mathcal{L}_{\text{mediation}} = \sum_{k,l,n}^{k+l=n+4} \frac{\mathcal{O}_{\text{med}}^{(k)} \mathcal{O}_{\text{SM}}^{(l)}}{\Lambda^n}$$

Owing to small couplings, such particles represent "dark sector" 7

1.Utilize Infrastructure 2. Maximize Physics Case

. . .

TeV

Muon Beam Energy

Dark Sectors & Muon Colliders

Things to Do:

2. Second generation right-handed neutrino production

1. Z' at muon Colliders: inclusive and semi-inclusive searches 3. Mu2e beams, beam dump infrastructure already in place!