Muon Colliders & Dark Sectors

Discussion Section

Cari Cesarotti & Yoni Kahn



How can we search for Dark Sectors at

Muon Colliders?
e |Vhat can we do with higher energy? 3 TeV - 10 TeV - 100 TeV?

® How does the cleaner environment of the muon collider facilitate searches?
e |Vhat sort of beam intensity do we need to surpass other experiments?
o |Vhat can be done at beam dumps? At what energy? What material?

® Can we just use low energy things from the LINAC (400 MeV, 800 MeV, 8 GeV)
or booster (8 GeV)?



What Dark Sectors are of Interest?

e What kind of portals are enhanced with muon colliders?

e |Vhat signals do we get from minimal models that can be seen at muon
colliders?

e |Vhat models would couple more strongly to 2nd generation or EW bosons?

o |Vhat are the best production mechanisms for new physics?



Tracking

From hits to particles

Slides from Talks

» Tracking certainly the biggest
challenge: 10x more hits than HL-LHC!
*» Large hit occupancy
(1000 hits/cm2) implies high data
volumes, large combinatorics.

Muon Collider experiment
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This would allow us to study the microscopic properties of the Higgs!

10 GeV -

* Neutrino experiments

(By comparison, an “ordinary” Higgs factory produces ~ 1 million Higgses.) » Hadron Decays

* B-decays

\

I a n LOW Art work by Z. Tabrizi

* At a lepton collider, both the trilinear and quartic couplings can be probed
in double Higgs production through VBF:
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* B-jet identification very important for physics case (in
particular for Higgs physics).
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* B-tagging relies on secondary vertices reconstructed
through tracks not associated to the Primary vertex.

» B-tagging efficiency found to be within 50-70% for
light-jet mis-tagging rate between 0.1% and 5%

Ns5=3TeV py colisons, Vs=1.5 TeV BIB overlay Ys=3 TeV u'p colisions, Ys=1.5 TeV BIB overlay
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Marco Valente

Notice the process is sensitive to both HHH and WWHH couplings!

b-tagging efficiency

light jet misidentification rate




Slides from Talks ACE & Beam Dumps

Beam Dump

Protons from N
. Booster > Uncooled Muons q 1 5%
Example CERN Locations @ ﬁ High-Z Target 8 ﬁ
e ()
Consider nTOF-like beam from PS for I Lernation sl <
cooling experiment: m:i‘.—él‘:ﬁ"'?ﬂ 100% I
 1pulse of 10° p at 20 GeV per 1.2 s Beam Dump

* i.e. 27 kW, maybe O(100kW) possible M. Calviani

0.15%

If SPL were, installed could use its beam,
eg. 5 GeV, 4 MW

More processing means Accelerator
fewer muons

What could be done at FNAL?

Beam Dump

<0.1%
10'® — 10%° 4 on target

Cari Cesarotti

Danlel Schulte

CDR Phase, R&D and Demonstrator Facility @ Demonstrator Facility Era - PIP-Il + ACE M| 2050ish

IR | _

D. Schulte

ACE & Beam Dump
> €

Broad R&D programme required and can be distributed
world-wide

= Models and prototypes 4 .
» Magnets, Target, RF systems, Absorbers, ... —eeell™ No Muon Cooling

« CDR development : =
* Integrated tests, also with beam ' L
Integrated cooling demonstrator is a key | e g Proton Pion [l at 200 MeV
facility == Beam Dump? Bremsstrahlung? Beam Dump?
= look for an existing proton beam Ke Yperou A

with significant power T Ty [ T T e

——_——E C. Rogers, R. Losito, et al. )

Different sites are being considered \f ooy e b Conmaeen After LINAC? D. Curtin, Y. Kahn, WiP w/ M. Furslond
* CERN, FNAL, ESS are being discussed | '£i“— High Wl city Digh-crcrpy o sanwes ' ' At 8 GeV'? R. Nguyen & P. Meade

* J-PARC also interesting as option T pate aweon

Could be used to house physics facility
< Are trying to explore what are good
options

D. Schulte Muon Collider Collaboration, FNAL, June 2023
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Choose a slide te add 1o this presentation.
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Jnlike electron beam. invisible partcie coesn't ieke all the beam energy:

low-mass invisibles are QED-like (and hard to ¢'stinguish from backgrounc)

Yoni Kahn

Beam requiremen..

ots of muons on target (MoT), i.e. high rep rate
¢ |[dentify and track each one so that we know they lost a significant
amount of memeantum (Pour < 0.5 i)
* Pion contamination = bad (esp. pions decaying in target). Estimate
105 will suffice for g-2 search
* Din > ~severa GeV - 10s of GeV:
» |ower boundary: need significant amount ot lost momentun ebove detector

thrasholds to detect bkg processes
e uppear bounaary: high momentum beam requires more B field lever arm, makes
‘or a big and expensive datector with poor coverage

Talks

M3 schematic
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Similar in spirit to LDMX (electron beam missing mocmentum)

Main differences from LDMX
* thicker (50 X0) active target (mucn is a MIP)
* putgcing muon momentum measured exclusively by recoil tracker
id HCal for veto only)
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Phase 1 (10 MQT): complete coverage of g-2 region for any
invisibly-decaying particle lighter than the muon
Phase 2 (1013 MQT): can probe large parts of
well-motivated DM parameter space

SM as an Effective Field Theory in the
presence of FIPs

Typical BSM model-independent approach is to include all possible

BSM operators + light new states explicitly.

Lsm ipsv™ = muz (H 504 5p) + all dim 4 terms (A, wgy o) +

(W.coeff. /A?) x Dim 6 etc (A, W Hey) + ...

all lowest dimension portals (4, Vo H, Ans Wne Hpg) %
portal couplings

+ dark scctor intcractions (Ape Wne Hns)

SM = Standard Model
DS — Dark Sector

Maxim Pospelov

Minimal portal interactions

Let us classify possible connections between Dark sector and SM
H'H(AS+A485) Higgs-singlet scalar interactions (scalar portal)
B,V “Kinetic mixing” with additional U(1)’ group
(becomes a specific example of J,/ 4 , extension)

LHN  mneutrino Yukawa coupling, N — RH neutrino

J,fA, requires gauge invariance and anomaly cancellation

It 15 very likely that the observed neutrino masses indicate that
Nature may have used the ZHN portal...

Dim>4
Ktl=n+d (k) i)

J,/ ¢,a/f axionic portal B Y \,( SM_

Owing to small couplings, such particles represent “dark sector”™



Dark Sectors & Muon Colliders
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Dark Sectors & Muon Colliders

Things to Do:

1. Z’ at muon Colliders: inclusive and semi-inclusive searches
2. Second generation right-handed neutrino production
3. Mu2e beams, beam dump infrastructure already in place!



