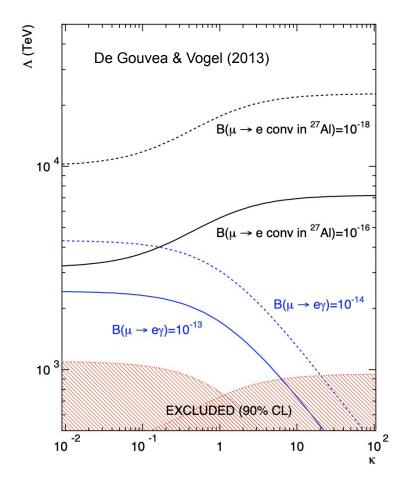
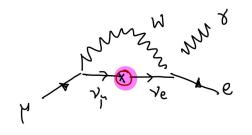

CLFV and Neutrinos

Innes Bigaran (Northwestern and Fermilab) Ryan Plestid (Caltech) Anil Thapa (Virginia U)

Fermilab Accelerator Complex Evolution (ACE) Workshop, 2023

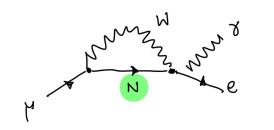


Neutrino oscillation between three generations


- Neutrinos are a probe of *lepton flavor symmetries*.
- Observed masses imply that there *must exist new physics* below the Planck scale.
- Measurements of mixing angles may supply window into physics beyond the SM that is responsible for the generation of neutrino masses.

Charged Lepton Flavour Violation | Motivations

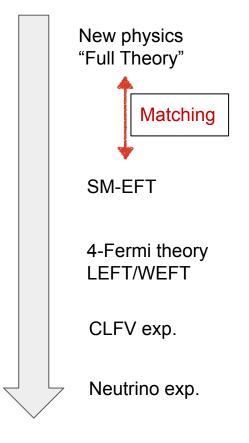
- Neutrinos provide *explicit empirical* evidence that $L_{e,\mu,\tau}$ are broken in nature. "
- *A priori* there is no reason to expect physics beyond the SM to obey these symmetries.
- CLFV can probe mass scales up to ~1000 TeV. Strongest constraints on many models.
- Observation of CLFV would constitute a *discovery* of physics beyond the SM.
- Discovery potential is *complementary* to energy frontier (e.g. LHC or muon collider).



Synergies between CLFV and Neutrino Physics

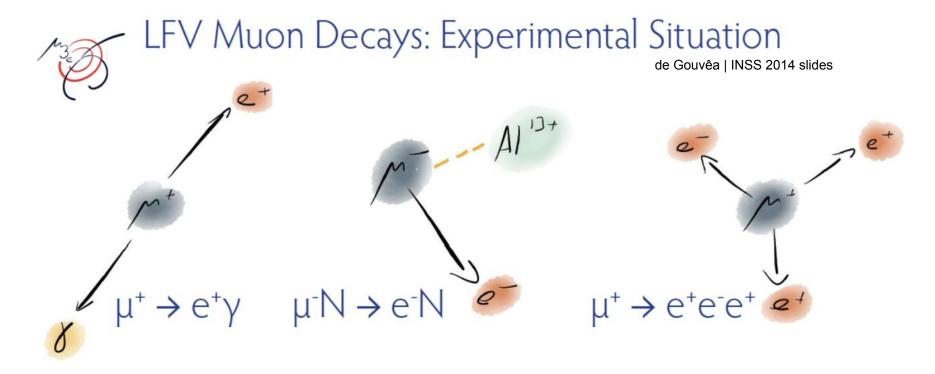
 SU(2) symmetry in the SM links neutrino and charged lepton

$$L_L \sim \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \sim (1, 2, -1/2)$$



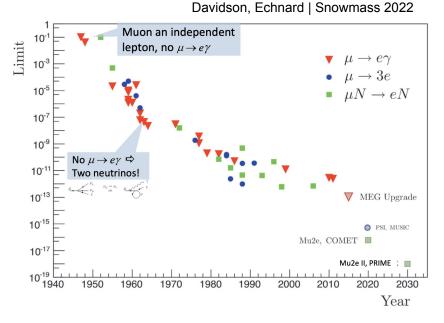
- New physics that mixes neutrinos which "generically" mixes charged leptons as well → correlated signatures
- CLFV processes often provide the strongest constraints on models of neutrino mass generation.

CLFV and neutrino experiments provide complementary probes of new physics.


Context with the SM-EFT

- For new physics heavier than a TeV or so, all effects can be encoded in effective operators built from SM fields.
- Can match observable in "Full Theory" and SM-EFT.
- Provides "Rosetta Stone" between Full Theory & SM-EFT.
- Model-independent constraints on SM-EFT can be converted to new physics model *post facto*.
- CLFV and neutrinos are *highly sensitive low energy probes* of low energy EFT → probe of "Full Theory".

Other probes

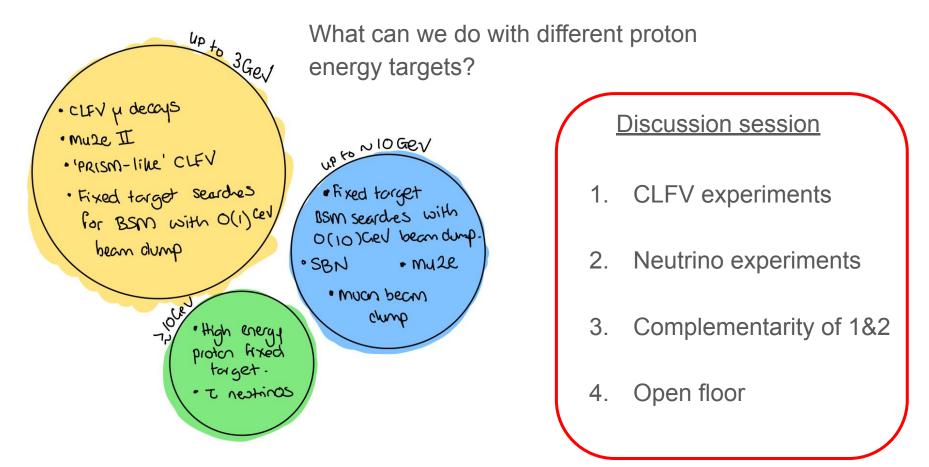

- Tau production at EIC.
- LFV tau decays (BELLE-II, LHCb).
- LFV meson decays.

Experimental probes of CLFV

Experimental landscape in the near future

CLFV

• Four order of magnitude jump


Neutrino Physics

- Neutrino mass ordering (JUNO)
- CP violating phase (DUNE, T2K)
- LNV (nEXO, CUPID, LEGEND-100).
- Precision frontier for PMNS matrix. (DUNE, HK, JUNO).
- Neutrino astro. (IceCube, KM3NET)

Connections to FNAL - ACE

	Experiment	Experiment type	Proton Beam			Uses existing or new
			Energy [GeV]	Power [kW]	Time Structure	beamline?
	Proton Storage Ring: EDM and Axion Searches	Precision tests Dark Matter	0.232	1e11 polarized protons per fill	Fill the ring every 1000s	new
	Physics with Muonium	Precision tests	0.8	1e(13+/-1) POT per second	cw	new
	REDTOP Run I	Precision tests	1.8 - 2.2	0.03-0.05	slow extraction	Muon Campus
	REDTOP Run II	Precision tests	0.8 - 0.92	200	cw,	new
	REDTOP Run III	Precision tests	1.7	>1,000	cw,	new
	Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron	Precision tests	0.8-2	1,000	quasi-continuous	new
	CLFV with Muon Decays	CLFV	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	new
	Mu2e II	CLFV	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Flexible time structure and minimal pulse-to-pulse variation	new
	Fixed Target Searches for new physics with O(1 GeV) Proton Beam Dump	Dark Sector, Neutrino	0.8 to 1.5 GeV	100 or more	<q(1 <q(30="" for="" for<br="" measurements,="" micro="" neutrino="" ns)="" pulse="" s)="" width="">dark matter searches, 10^{-5} or better duty factor</q(1>	new
	PRISM-like Charged Lepton Flavor Violation	CLFV	1 -3 GeV Energy is not very	up to 2 MW	15ns pulses at a rep rate of about 1 kHz	new
	Proton Irradiation Facility	R&D	important	1e18 protons in a few hours	Pulsed beam (duty factor not specified)	new
	SBN	Neutrino	8		20Hz	BNB
	Mu2e	CLFV	8		<10^{-10} extinction	Muon Campus
	Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	8	up to 115	Beam spills less than a few microsec with separation between spills greater than 50 microsec	BNB
	Muon beam dump	Dark Sector	8 (producing 3 GeV muons)	the whole run	cw	Muon Campus
	Muon Collider R&D	R&D	8- 16GeV	4e13 to 1.2e14 protons per bunch	5 - 20 Hz rep rate and bunch length 1-3 ns	new
	Muon Missing Momentum	Dark Sector	few 10s of GeV	10^{10} muons per experimental	Pulsed beam (duty factor not specified)	new
	High Energy Proton Fixed Target	Dark Sector, Neutrino	O(100 GeV)	1e12 POT/s therefore ~20 kW	OW via resonant extraction. "IF we could up the duty factor that would be even better"(?)	Switchyard or new
	Test-Beam Facility	R&D	120, lower energies would also be beneficial	10 to 100 kHz on the testing	Pulsed beam (duty factor not specified)	Switchyard or new
	Tau Neutrinos	Neutrino	120	1200 or higher	MI time structure	LBNF

Connections to FNAL - ACE

CLFV Experiments

- What interesting targets should CLFV experiments aim for?
- What about related searches for lepton number violation?
- How do accelerator upgrades alter prospects for DUNE? How important is a 3 GeV vs 8 GeV beam for Mu2e-II ?
- What secondary targets are being considered (beyond Al for Mu2e). Titanium vs Vandium for example?
- Can Fermilab be a world leading facility in muon decay searches? What additional infrastructure is needed?
- What about related searches with pions?

Neutrino Experiments

- What is the value of precision measurements in the neutrino sector?
- Is there a large trade-off between a tau optimized beam from the neutrino oscillation program?
- How long would it take to get an interesting statistical samples of tau events at the near detector complex (for DUNE).
- What do neutrino cross-section measurements tell us about new physics?
- What about the SBN program?

Complementarity between CLFV and Neutrinos

- How can experiments probe the lepton flavour and lepton number violation?
- What could we do for neutrino physics with high energy muon sources?
- How do accelerator upgrades alter prospects for DUNE?
- What sort of "parasitic" experiments can be done with muon beam dumps? (Any impact on CLFV?)

Open floor

Where: Level 13, WH13SW-Disappearance

Also, contribute here

 \rightarrow

