

Dark Sectors + Neutrinos Parallel Session -Discussion Seeds-

¹Bhaskar Dutta, ²<u>Alexandre Sousa</u>, ³Jacob Zettlemoyer

¹Texas A&M, ²Cincinnati, ³Fermilab

ACE Science Workshop, Fermilab, June 15, 2023

Theory Landscape

Proton, (muon, beta) beams

High Intensity $\sim 10^{21-23} POT$

What lives in the "blue sky"?

Present and Near-Future Experimental Landscape

Listing accelerator-based experiments only!

Pion/Kaon/Isotope Decay-at-Rest: 60 MeV - 8 GeV proton beams PIP2-BD, KPIPE (Fermilab), COHERENT (ORNL), CAPTAIN-Mills (LANL), JSNS² (JPARC), IsoDAR (Yemilab)

Colliders:

Up to 14 TeV CM proton collisions FASERnu, FLArE (CERN) Detector Tech. Ar, WCh, Csl, Nal, Ge, Scint., Emulsion, etc. Short-Baseline Pion Decay-in-Flight: 8 GeV BNB on-axis + 120 GeV NuMI off-axis, 400 GeV SPS proton beams SBN Program (Fermilab), SHiP (CERN)

Long-Baseline Pion Decay-in-Flight: 2.5 GeV - 120 GeV proton beams NOvA, DUNE (Fermilab), T2K, HyperK (JPARC), ESSnuSB (ESS Lund)

Muon Decay-in-Flight: 1 - 6 GeV muon beams nuSTORM (CERN)

ACE and Longer-Term Expt. Efforts

	Experiment	Experiment type	Proton Beam			Uses existing or new	
			Energy [GeV]	Power [kW]	Time Structure	beamline?	
	Proton Storage Ring: EDM and Axion Searches	Precision tests Dark Matter	0.232	1e11 polarized protons per fill	Fill the ring every 1000s	new	
	Physics with Muonium	Precision tests	0.8	1e(13+/-1) POT per second	cw	new	
	REDTOP Run I	Precision tests	1.8 - 2.2	0.03-0.05	slow extraction	Muon Campus	
	REDTOP Run II	Precision tests	0.8 - 0.92	200	CW,	new	
	REDTOP Run III	Precision tests	1.7	>1,000	CW,	new	
	Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	0.8-2	1,000	quasi-continuous	new	
	CLFV with Muon Decays	CLFV	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	new	
	Mu2e II	CLFV	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Flexible time structure	new	
	Fixed Target Searches for new physics with O(1 GeV) Proton Beam Dump	Dark Sector, Neutrino	0.8 to 1.5 GeV	100 or more	Q(1 micro s) pulse width for neutrino measurements, <o(30 for<br="" ns)="" pulse="" width="">dark matter searches, 10^{-5} or better duty factor</o(30>	new	
	PRISM-like Charged Lepton Flavor Violation	CLFV	1 -3 GeV	up to 2 MW	15ns pulses at a rep rate of about 1 kHz	new	
	Proton Irradiation Facility	R&D	Energy is not very	1e18 protons in a few hours	Pulsed beam (duty factor not specified)	new	
	SBN	Neutrino	8	32	20Hz	BNB	
_	MU/A			0	LC102-10 AVERTOR		
	Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	8	up to 115	Beam spills less than a few microsec with separation between spills greater than 50 microsec	BNB	
	Muon beam dump	Dark Sector	8 (producing 3 GeV muons)	3e14 muons in total on target for the whole run	cw	Muon Campus	
	Muon Collider R&D	R&D	8-16GeV	4e13 to 1.2e14 protons per bunch	5 - 20 Hz rep rate and bunch length 1-3 ns	new	
	Muon Missing Momentum	Dark Sector	few 10s of GeV	10^{10} muons per experimental	Pulsed beam (duty factor not specified)	new	
	High Energy Proton Fixed Target	Dark Sector, Neutrino	O(100 GeV)	1e12 POT/s therefore ~20 kW	CW via resonant extraction. "IF we could up the duty factor that woul dbe even better"(?)	Switchyard or new	
	Test-Beam Facility	R&D	120, lower energies would also be beneficial	10 to 100 kHz on the testing	Pulsed beam (duty factor not specified)	Switchyard or new	
	Tau Neutrinos	Neutrino	120	1200 or higher	MI time structure	LBNF	

Options proposed in the <u>Proton Intensity Upgrade - Central Design Group Report</u>. How do we expand on this using the options presented within ACE and beyond?

Proposed Questions for Discussion - 1

- How do we maximize complementarity of the accelerator options under the ACE plan with existing/proposed experiments probing dark sector and neutrino physics?
 - Considering proton energies, detection thresholds, detector locations (i.e. on-axis or off-axis), and baselines
 - Large swathes of dark sector, g-2, etc., parameter spaces remain unexplored. How do we probe them?
- Searching for New Physics is done directly by producing the mediator from various meson decays. Are we missing any important physics ideas or production/detection channels?
 - LDM, ALP, HNL, tau neutrino appearance, tridents, millicharged particles, etc.; electron/proton bremsstrahlung, photon conversions, Primakoff, Compton, etc. and detection via mediator scattering, DM scattering, decays, neutrino scattering...
- Which ACE upgrades before and during DUNE running might enable expansion of DUNE's physics scope?

Proposed Questions for Discussion - 2

• What are the most impactful detector media to search for physics in the dark and neutrino sectors?

• What are the New Physics probes enabled by proton (beam-dump) runs at neutrino beam facilities?

• What possibilities exist beyond the upcoming DUNE program to continue leading in this science?

• Other questions / points to discuss

Thank you!

Come to our Session in the wISDome (WH5E)! <u>ZOOM Info Doc.</u>, Look for *"Dark Sectors – Neutrinos"* (FNAL services account required)

Live document for your comments / ideas!

Neutrino - Dark Sectors

B. Dutta

J. Zettlemoyer A. Sousa