

Discussion Session - Dark Sectors and Neutrinos

¹Bhaskar Dutta, ²Alexandre Sousa, ³Jacob Zettlemoyer

¹Texas A&M, ²Cincinnati, ³Fermilab

ACE Science Workshop, Fermilab, June 15, 2023

Questions from P5

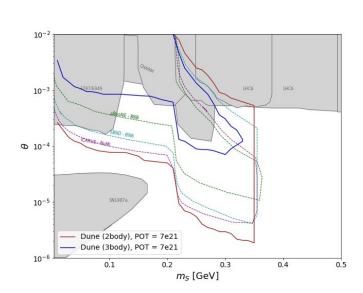
Experiments:

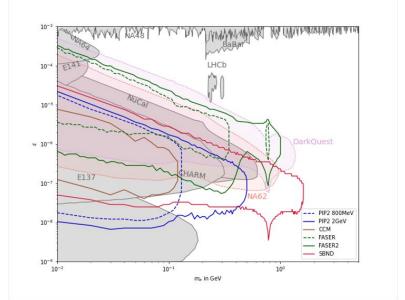
- How does the experiment make use of the ACE beam?
- Is the experiment uniquely enabled by the ACE upgrades?
- Can this experiments be performed elsewhere?
- What particular accelerator components or capabilities are necessary?
 - What proton energies are needed?
 - What proton quantities are needed?
 - What time structure is needed? (bunch length, train structure)
 - Can the experiment be performed with 800 MeV protons from PIP-II?

DUNE

- What are the implications for DUNE of the upgrade plans?
 - Positive impacts of higher beam power
 - Negative impacts of installation & commissioning time

Please contribute to our discussion!

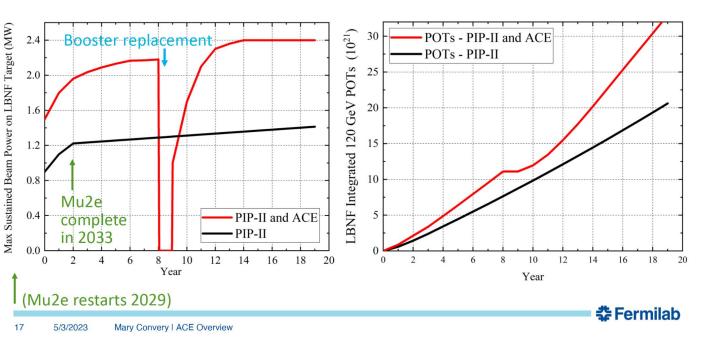

Live working discussion document
Linked on the ACE workshop indico
page under our session!


 How do we maximize complementarity of the accelerator options under the ACE plan with existing/proposed experiments probing dark sector and neutrino physics?

 Considering proton energies, detection thresholds, detector locations (i.e. on-axis or off-axis), and baselines?

Large swathes of dark photon, ALP, g-2, etc., parameter spaces remain

unexplored. How do we probe them?



A. Karthikeyan, TAMU

- Searching for new physics is done directly by producing the mediator from various meson decays. Are we missing any important physics ideas or production/detection channels?
 - LDM, ALP, HNL, tau neutrino appearance, tridents, millicharged particles, etc.; electron/proton bremsstrahlung, photon conversions, Primakoff, Compton, etc. and detection via mediator scattering, DM scattering, decays, neutrino scattering...

 Which ACE upgrades before and during DUNE running might enable expansion of DUNE's Physics Scope?

DUNE power and **POT** implications

 What are the most impactful detector media to search for physics in the dark and neutrino sectors? What are the New Physics probes enabled by proton (beam-dump) runs at neutrino beam facilities? What possibilities exist beyond the upcoming DUNE program to continue leading in this science? PIP-II and ACE Options

PIP-II nominal physics "spigots"

From J. Eldred's talk yesterday

SOA: 0.8 GeV PIP-II Linac, experiments which

require CW linac

S0B: 0.8 GeV PIP-II Linac, experiments which can use pulsed linac beam.

SOC: 0.8 GeV PIP-II, with Accumulator Ring

program.

SOD: 8 GeV Booster Experiments

SOE: 8 GeV Recycler & Delivery Ring Experiments.

S0F: 120 GeV Main Injector Slow-Extraction

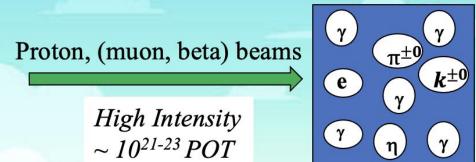
program.

S1: O(1) GeV High Duty-Factor Beamline (like SOA and SOB 0.8 GeV PIP-II Linac, but higher energy)

ACE upgrade "spigots"

S2: O(1) GeV Low Duty-Factor Beamline (like SOC 0.8 GeV PIP-II with AR

program, but higher energy) S3: O(10) GeV Low Duty-Factor


power).

Beamline (like SOD 8 GeV Booster Experiments, but much higher

10

Supplements

Theory Landscape

What lives in the "blue sky"?

Present and Near-Future Experimental Landscape

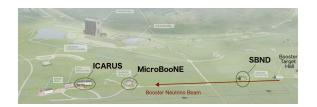
Listing accelerator-based experiments only!

Pion/Kaon/Isotope Decay-at-Rest:

60 MeV - 8 GeV proton beams
PIP2-BD, KPIPE (Fermilab), COHERENT
(ORNL), CAPTAIN-Mills (LANL),
JSNS² (JPARC), IsoDAR (Yemilab)

Colliders:

Up to 14 TeV CM proton collisions FASERnu, FLArE (CERN)

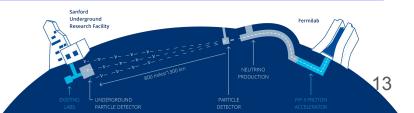


Detector Tech.

Ar, WCh, Csl, Nal, Ge, Scint., Emulsion, etc.

Short-Baseline Pion Decay-in-Flight:

8 GeV BNB on-axis + 120 GeV NuMI off-axis, 400 GeV SPS proton beams SBN Program (Fermilab), SHiP (CERN)



Long-Baseline Pion Decay-in-Flight:

2.5 GeV - 120 GeV proton beams
NOvA, DUNE (Fermilab), T2K, HyperK (JPARC),
ESSnuSB (ESS Lund)

1 - 6 GeV muon beams nuSTORM (CERN)

ACE and Longer-Term Expt. Efforts

Experiment	Experiment	Proton Beam			Uses existing or new
	type	Energy [GeV]	Power [kW]	Time Structure	beamline?
Proton Storage Ring: EDM and Axion Searches	Precision tests Dark Matter	0.232	1e11 polarized protons per fill	Fill the ring every 1000s	new
Physics with Muonium	Precision tests	0.8	1e(13+/-1) POT per second	cw	new
REDTOP Run I	Precision tests	1.8 - 2.2	0.03-0.05	slow extraction	Muon Campus
REDTOP Run II	Precision tests	0.8 - 0.92	200	CW,	new
REDTOP Run III	Precision tests	1.7	>1,000	CW,	new
Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Predsion tests	0.8-2	1,000	quasi-continuous	new
CLFV with Muon Decays	CLFV	Not critical 0.8 to a few GeV	100 or more	continous beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	new
Mu2e II	CLFV	1 to 3	100	pulse width 10s of ns or better separated by 200 to 2000 ns. Flexible time structure	new
Fixed Target Searches for new physics with O(1 GeV) Proton Beam Dump	Dark Sector, Neutrino	0.8 to 1.5 GeV	100 or more	<o(1 10^(-5)="" <o(30="" better="" dark="" duty="" factor<="" for="" matter="" measurements,="" micro="" neutrino="" ns)="" or="" p="" pulse="" s)="" searches,="" width=""></o(1>	new
PRISM-like Charged Lepton Flavor Violation	CLFV	1 -3 GeV	up to 2 MW	15ns pulses at a rep rate of about 1 kHz	new
Proton Irradiation Facility	R&D	Energy is not very	1e18 protons in a few hours	Pulsed beam (duty factor not specified)	new
SBN	Neutrino	8	32	20Hz	BNB
MUZA	ICI EV	9	9	LETUY-TUK OVERPETOR	IMUON L'ampue
Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	8	up to 115	Beam spills less than a few microsec with separation between spills greater than 50 microsec	BNB
Muon beam dump	Dark Sector	8 (producing 3 GeV muons)	3e14 muons in total on target for the whole run		Muon Campus
Muon Collider R&D	R&D	8- 16GeV		5 - 20 Hz rep rate and bunch length 1-3 ns	new
Muon Missing Momentum	Dark Sector	few 10s of GeV	10^{10} muons per experimental	Pulsed beam (duty factor not specified)	new
High Energy Proton Fixed Target	Dark Sector, Neutrino	O(100 GeV)	1e12 POT/s therefore ~20 kW	CW via resonant extraction. "IF we could up the duty factor that would be even better" (?)	Switchyard or new
Test-Beam Facility	R&D	120, lower energies would also be beneficial	10 to 100 kHz on the testing	Pulsed beam (duty factor not specified)	Switchyard or new
Tau Neutrinos	Neutrino	120	1200 or higher	MI time structure	LBNF

Options proposed in the <u>Proton Intensity Upgrade - Central Design Group Report</u>. How do we expand on this using the options presented within ACE and beyond?

Proposed Questions for Discussion - 1

- How do we maximize complementarity of the accelerator options under the ACE plan with existing/proposed experiments probing dark sector and neutrino physics?
 - Considering proton energies, detection thresholds, detector locations (i.e. on-axis or off-axis), and baselines
 - Large swathes of dark sector, g-2, etc., parameter spaces remain unexplored. How do we probe them?
- Searching for New Physics is done directly by producing the mediator from various meson decays. Are we missing any important physics ideas or production/detection channels?
 - LDM, ALP, HNL, tau neutrino appearance, tridents, millicharged particles, etc.;
 electron/proton bremsstrahlung, photon conversions, Primakoff, Compton, etc. and detection via mediator scattering, DM scattering, decays, neutrino scattering...
- Which ACE upgrades before and during DUNE running might enable expansion of DUNE's physics scope?

Proposed Questions for Discussion - 2

 What are the most impactful detector media to search for physics in the dark and neutrino sectors?

 What are the New Physics probes enabled by proton (beam-dump) runs at neutrino beam facilities?

 What possibilities exist beyond the upcoming DUNE program to continue leading in this science?

Other questions / points to discuss