The REDTOP experiment: a η/η' factory **to explore** dark matter and physics beyond the Standard Model

Rare Eta Decays TO Probe New Physics

Corrado Gatto INFN Napoli and Northern Illinois University

ACE Workshop - Fermilab

Motivations for an η/η' Factory

"Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders" [G. Krnjaic RF6 Meeting, 8/2020]

- The only known particles with <u>all-zero quantum numbers</u>: Q = I = J = S = B = L = 0 are the η/η' mesons and the Higgs boson (also the vacuum!) ->very rare in nature
- The η meson is a Goldstone boson (the η' meson is not!)
- The η/η' decays are flavor-conserving reactions
- Only <80% (70%) of the $\eta(\eta')$ is made of quarks

A η/η' factory is equivalent to a low energy Higgs factory and an excellent laboratory to probe New Physics below 1 GeV

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield	~10 ¹⁴ n	mesons/yr and	$\sim 10^{12} \eta'$ mesons/yr
------------------	---------------------	---------------	--------------------------------

C, T, CP-violation		New particles and forces searches					
	\Box CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	□ <i>Scalar meson searches (charged channel):</i> $\eta \rightarrow \pi^{\circ} H$ with $H \rightarrow e^+e^-$ and					
	\Box <i>CP Violation (Type I – P and T odd , C even):</i> η <i>–></i> $4\pi^{\circ} \rightarrow 8\gamma$	$H \rightarrow \mu^{+} \mu^{-}$					
■ CP Violation (Type II - C and T odd , P even): $\eta \to \pi^{\circ} \ell^{*} \ell$ and $\eta \to 3\gamma$ ■ Test of CP invariance via μ longitudinal polarization: $\eta \to \mu^{*}\mu^{-}$ ■ CP inv. via γ^{*} polarization studies: $\eta \to \pi^{*}\pi^{-}e^{+}e^{-} & \mathcal{S}^{-}\eta \to \pi^{*}\pi^{-}\mu^{*}\mu^{-}$ ■ CP invariance in angular correlation studies: $\eta \to \mu^{*}\mu^{-}e^{+}e^{-}$ ■ CP invariance in angular correlation studies: $\eta \to \mu^{*}\mu^{-}\pi^{*}\pi^{-}$		■ Dark photon searches: $\eta \to \gamma A'$ with $A' \to \ell^* \ell$ ■ Protophobic fifth force searches : $\eta \to \gamma X_{17}$ with $X_{17} \to \pi^* \pi^-$ ■ QCD axion searches : $\eta \to \pi \pi a_{17}$ with $a_{17} \to e^+ e^-$ ■ New leptophobic baryonic force searches : $\eta \to \gamma B$ with $B \to e^+ e^-$ or $B \to \gamma \pi^\circ$					
				\square Indirect searches for dark photons new gauge bosons and leptoquark: η			
					$\Box CP$ invariance in μ polar. in studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$	$\rightarrow \mu^{+}\mu^{-}$ and $\eta \rightarrow e^{+}e^{-}$	
					$\Box T$ invar. via μ transverse polarization: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \rightarrow \gamma \mu^{+} \mu^{-}$	Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-) _{2M_{\mu}} \rightarrow \gamma e^+e^-$	
			$\Box CPT \ violation: \ \mu \ polr. \ in \ \eta \to \pi^* \mu \ v \ vs \ \eta \to \pi^- \mu^* v \ - \ \gamma \ polar. \ in \ \eta \to \gamma \ \gamma$	Lepton Universality			
	Other discrete summetry violations	•HNL searches: $\eta \to \pi^{\circ} H$ with $H \to v N_2$, $N_2 \to h' N_1$, $h' \to e^+ e^-$					
	□Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$	Other Precision Physics measurements					
■ <i>Radiative Lepton Flavor Violation:</i> $\eta \rightarrow \gamma \mu^+ e^- + c.c.$ ■ <i>Double lepton Flavor Violation:</i> $\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.$		Proton radius anomaly: $\eta \rightarrow \gamma \mu^+ \mu^- vs \eta \rightarrow \gamma e^+ e^-$					
		\Box All unseen leptonic decay mode of η / η ' (SM predicts 10 ⁻⁶ -10 ⁻⁹)					
	Non- η/η' based BSM Physics	High precision studies on medium energy physics					
□ <i>Neutral pion decay:</i> $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+e^-$ □ <i>ALP's searches in Primakoff processes:</i> $p \ Z \rightarrow p \ Z \ a \rightarrow l^+l^-$		□Nuclear models					
		Chiral perturbation theory					
□ <i>Charged pion and kaon decays:</i> $\pi^+ \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^- and K^+ \rightarrow$		□Non-perturbative QCD					
	$\mu^+ \nu A' \to \mu^+ \nu e^+ e^-$	□Isospin breaking due to the u-d quark mass difference					
	□Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow l^+l^-$	□Octet-singlet mixing angle					
		<i>□Electromagnetic transition form-factors (important input for g-2)</i>					

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation	New particles and forces searches	
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	□ Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and	
□ <i>CP Violation</i> (Type I – P and T odd , C even): $\eta \rightarrow 4\pi^{\circ} \rightarrow 8\gamma$	$H \rightarrow \mu^{t} \mu^{r}$	
CP Violation (Type II - C and T odd , P even): $\eta \to \pi^{\circ} \ell^{*} \ell$ and $\eta \to 3\gamma$	□ <i>Dark photon searches:</i> $\eta \rightarrow \gamma A'$ <i>with</i> $A' \rightarrow \ell^* \ell$	
Dest of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{+}\mu^{-}$	□ <i>Protophobic fifth force searches</i> : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow \pi^{+}\pi^{-}$	
CP inv. via γ^* polarization studies: $\eta \to \pi^* \pi^- e^+ e^- \& \eta \to \pi^* \pi^- \mu^+ \mu^-$	□ <i>QCD</i> axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+e^-$	
CP invariance in angular correlation studies: $\eta \rightarrow \mu^{\dagger}\mu^{-}e^{+}e^{-}$	■ <i>New leptophobic baryonic force searches</i> : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^\circ$	
CP invariance in angular correlation studies: $\eta \rightarrow \mu^{+}\mu^{-}\pi^{+}\pi^{-}$	^{\Box} Indirect searches for dark photons new gauge bosons and leptoquark: η	
-CP invariance in pop Ni/: "PTX-Derim		
D <i>T</i> invar. via μ transverse polarizes ion: $\eta \rightarrow \pi^{0}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-$	$= 2d c h f f t u + u n t \cdot \cdot$	
CPT viola tion: μ polar $\pi \gamma$ π $t \rightarrow \pi \mu^{+} \gamma - \gamma$ polar in $p \rightarrow \tau \gamma$	PLepton Universality	
Other ascrete sympletry violations	V-CH (LU) - AN - NU GP	
□ Lepton Flavor Violation: $η \rightarrow μ^+e^- + c.c.$	Other Precision Physics measurements	
Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma \mu^+ e^- + c$	$\mathbf{Y} \mathbf{Q}_{i} \mathcal{Q}_{i} \mathbf{q}_{i} \mathbf{q}_$	
Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$	\Box All unseen leptonic decay mode of η / η' (SM predicts 10 ⁻⁶ -10 ⁻⁹)	
Non- η/η' based BSM Physics	High precision studies on medium energy physics	
□Neutral pion decay: $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$	□Nuclear models	
$\Box ALP's$ searches in Primakoff processes: $p \ Z \to p \ Z \ a \to l^+l^-$	Chiral perturbation theory	
Charged pion and kaon decays: $\pi^+ \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$ and $K^+ \rightarrow \mu^+ v e^+ e^-$	■Non-perturbative QCD	
$\mu^+ v A' \to \mu^+ v e^+ e^-$	□Isospin breaking due to the u-d quark mass difference	
□ <i>Dark photon and ALP searches in Drell-Yan processes: qqbar</i> \rightarrow <i>A'/a</i> \rightarrow <i>l</i> + <i>l</i> -	^D Octet-singlet mixing angle	
	^D <i>Electromagnetic transition form-factors (important input for g-2)</i>	

Main Physics Goals of REDTOP

Test of CP invariance via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ}\pi^{+}\pi^{-}$ Search for asymmetries in the dalitz plot with very high statistics

Test of CP invariance via μ polarization studies: $\eta \rightarrow \pi^{\circ}\mu^{+}\mu^{-}$, $\eta \rightarrow \gamma\mu^{+}\mu^{-}$, $\eta \rightarrow \mu^{+}\mu^{-}$, Measure the angular asymmetry between spin and momentum

Dark photon searches: $\eta \rightarrow \gamma A'$, with $A' \rightarrow \mu^+\mu^-$, $A' \rightarrow e^+e^-$ Need excellent vertexing and particle ID

QCD axion and ALP searches: $\eta \rightarrow \pi\pi a$, with $a \rightarrow \gamma\gamma$, $a \rightarrow \mu^+\mu^-$, $a \rightarrow e^+e^-$ Dual (or triple!) calorimeters and vertexing

Dark scalar searches: $\eta \rightarrow \pi^{\circ}H$, with $H \rightarrow \mu^{+}\mu^{-}$, $H \rightarrow e^{+}e^{-}$ Dual (or triple!) calorimeters and particle ID

Lepton Flavor Universality studies: $\eta \rightarrow \mu^+ \mu^- X$, $\eta \rightarrow e^+ e^- X$ Need excellent particle ID

REDTOP Running Modes for $10^{14} \eta/\eta'$ mesons

REDTOP

Conclusions

- All meson factories: LHCb, B-factories, Dafne, J/psi have produced a broad spectrum of nice physics. An η / η' factory will do the same
- **REDTOP** has been designed expressely to study rare processes and to discover physics BSM in the MeV-GeV mass region
- Only experiment (with SHIP) sensitive to four DM portals
- Very large physics reach for NP as well
- New detector techniques benefit the next generation high intensity experiments
- Beam requirements could be met by several labs in US, Europe, and Asia
 - Before 2030: HIAF and GSI (Delivery Ring @ Fermilab?)
 - After 2030: Fermilab and ESS, FAIR
- *Moderate cost: ~100 M\$ (including contingency and labor)*

More details: <u>https://redtop.fnal.gov</u> and <u>https://arxiv.org/abs/2203.07651</u>

Backup Slides

REDTOP Key Points

REDTOP: η/η' yielding ~10¹⁴(10¹²) mesons $O(10^5)$ the existing world sample – 3-yr run

Hadro-produced mesons: requires a 30W (55W) CW proton beam Pion beam also well suited

Detector designed to search for BSM physics in the MeV-GeV region Main search fields: dark matter and CP-violation Sensitive to 17MeV resonances

Moderate cost: \$55M excl. contingency and labor

REDTOP Collaboration

J. Barn, A. Mane Argonnie National Laborationy, (USA)

J. Comfort, P. Mauskopf, D. McFarland, L. Thomas Arizona State University, (USA)

I. Pedraza, D. Leon, S. Escobar, D. Herrera, D. Silverio Benemérita Universidad Autónoma de Puebla, (Mexico)

W. Abdallah Faculty of Science, Cairo University, Giza, (Egypt)

D. Winn Fairfield University, (USA)

A. Alqahtani Georgetown University, (USA)

W. Abdallah Cairo University, Cairo (Egypt)

A. Kotwal Duke University, (USA)

M. Spannowski Durham University, (UK)

A. Liu Euclid Techlabs, (USA)

J. Dey, V. Di Benedetto, B. Dobrescu, D. Fagan, E. Gianfelice-Wendt, E. Hahn, D. Jensen, C. Johnstone, J. Johnstone, J. Kilmer, G.Krajaio, T. Kobilaroik, A. Kronfeld, K. Krempetz, S. Los, M. May, A. Mazzaoane, N. Mokhov, W. Pellico, A. Pla-Dalmau, V. Pronskikh, E. Ramberg, J. Rauch, L. Ristori, E. Schmidt, G. Sellberg, G. Tassotto, Y.D. Tsai

Fermi National Accelerator Laboratory, (USA)

J. Shi Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, I, Guangzhou 510006, (China)

R. Gandhi Harish-Chandra Research Institute, HBNI, Jhunsi (India)

S. Homiller Harvard University, Cambridge, MA (USA)

E. Pasisamar Indiana University (USA)

P. Sanchez-Puertas IFAE – Barcelona (Spain)

X. Chen, Q. Hu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

C. Gatto¹¹ Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, (Italy)

W. Baldini Istituto Nazionale di Fisica Nucleare – Sezione di Ferrara, (Italy)

R. Carosi, A. Kievsky, M. Miviani Istituto Nazionale di Fisica Nucleare – Sezione di Pisa, (Italy)

W. Krzemień, M. Silarski, M. Zielinski Jagiellonian University, Krakow, (Poland)

D. Guadagnoli Laboratoire d'Annecy-le-Meux de Physique Théorique, (France)

D. S. M. Alves, S. Gonzalez-Solis de la Fuente, S. Pastore Los Alamos National Laboratory, (USA)

M. Berlowski National Centre for Nuclear Research – Warsaw, (Poland)

G. Blazey, A. Dychkant, K. Francis, M. Syphers, V. Zutshii, P. Chintalapati, T. Malla, M. Figora, T. Fletcher Northern Illinois University, (USA)

A. Ismail Oklahoma State University, (USA)

D. Egaña-Ugrinovic

Perimeter Institute for Theoretical Physisos – Waterloo, (Canada) S. Rov

Physical Research Laboratory, Ahmedabad – Ahmedabad, (India)

Y. Kahn Princeton University – Princeton, (USA)

D. McKeen TRIUMF (Canada)

Z. Ye Tsinghua University, (China)

P. Meade Stony Brook University - New York, (USA)

A. Gutiérrez-Rodriguez, M. A. Hernandez-Ruiz Universidad Autónoma de Zacatecas, (Mexico)

R. Escribano, P. Masjuan, E. Royo Universitat Autònoma de Barcelona, Departament de Física and Institut de Física d'Attes Energies, (Spain)

J. Jaeckel Universität Heidelberg, (Germany)

B. Kubis Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, (Germany)

C. Siligardi, S. Barbi, C. Mugoni Università di Modena e Reggio Emilia, (Italy)

L. E. Marcucci* Universita' di Pisa, (Italy)

M. Guida³ Università di Salemo, (Italy)

S. Charlebois, J. F. Pratte Université de Sherbrooke, (Canada)

L. Harland-Lang University of Oxford, (UK)

J. M. Berryman University of California Berkeley, (USA)

S. Gori University of California Santa Cruz, (USA)

R. Gardner, P. Paschos University of Chicago, (USA)

J. Konisberg University of Florida, (USA)

C. Mills⁵ University of Illinois Chicago, (USA)

M. Murray, C. Rogan, C. Royon, Nicola Minafra, A. Novikov, F. Gautier, T. Isidori University of Kansas, (USA)

S. Gardner, X. Yan University of Kentucky, (USA)

Y. Onel University of Iowa, (USA)

B. Batell, A. Freitas, M. Rai University of Pittsburgh, (USA)

M. Pospelov University of Minnesota , (USA)

University of Science and Technology of China, (China)

K. Maamari tier Meeting - C. Gatto - INFN & NIU

A. Kupso, Maja Olvegård University of Uppsala, (Sweden)

B. Fabela-Enriquez Vanderbilt University, (USA)

S. Tulin York University, (Canada)

14 Countries 57 Institutions 126 Collaborators

The physics case for REDTOP

Physics case presented in 176-pp White Paper. Sensitivity studies based on ~10¹⁴ η mesons (3.3x10¹⁸ POT and 3-yr run), >30x10⁶ CPU-Hr on OSG+NICADD

15 processes fully simulated and reconstructed – 20 theoretical models benchmarked

- Four BSM portals
- Three CP violating processes requiring no μ-polarization measurement
- A fourth CP violating processes under study
- Three CP violating processes requiring μ -polarization measurement
- Two lepton flavor universality studies
- Two lepton flavor violation studies

Key detector parameters

- Large sensitivity to <17 Mev mass resonances (compared to WASA and KLOE)
- Tracking capable to reconstruct detached verteces up to ~100 cm
- Sensitivity to BR ~ $\mathcal{O}(10^{-11})$ (~ $\mathcal{O}(10^{-12})$ with pion beam)
- Detector optimization under way

Acceleration Scheme for Run-I (M. Syphers)

Single p pulse from booster ($\leq 4x10^{12}$ p) injected in the DR (former debuncher in anti-p production at Tevatron) at fixed energy (8 GeV)

Energy is removed by inserting 1 or 2 RF cavities identical to the one already planned (~5 seconds)

Slow extraction to REDTOP over ~40 seconds.

The 270° of betatron phase advance between the Mu2e Electrostatic Septum and REDTOP Lambertson is ideal for AP50 extraction to the inside of the ring.

Total time to decelerate-debunch-extract: 51 sec: duty cycle ~80%

Cost estimate

- Three funding scenarios considered
- Largest cost uncertainties
 - ADRIANO2 SiPM's (2x10⁶ 4x10⁶)
 - LGAD mechanics

□ No labor considered (usually, 1/3 of the total)

	Baseline option	Optimized option	Expensive option
Target+beam pipe	0.5	0.5	0.9
Vtx detector	0.93	3.11	25.4
LGAD tracker	18.5	18.5	19.6
CTOF	0.6	1.3	3.0
ADRIANO2	47.7	23.9	4''.7
Solenoid	0.2	0.2	0.2
Supporting structure	1	1	1
Trigger	1.3	1.3	5
DAQ	5	5	5
Total	69.7	54.8	101.8
Contingency 50%	34.9	27.4	50.9
Grand total	104.6	82.2	152.7

14