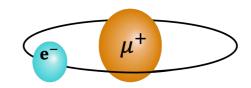
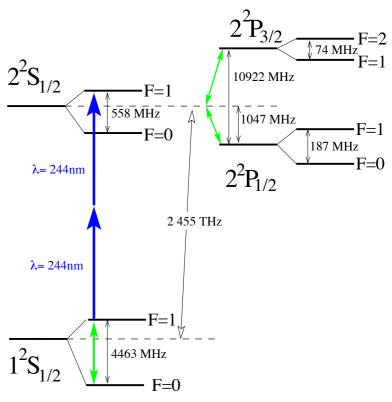
Future Muon and Muonium Physics at Fermilab

S. Corrodi,¹ C. Gatto,^{6,7} C. Izzo,³ C. J. Johnstone,³ D. M. Kaplan,* ^{4,5} K. R. Lynch,³ D. C. Mancini,⁴ A. Mazzacane,³ B. McMorran,⁸ J. P. Miller,² J. D. Phillips,^{4†} T. J. Phillips,⁴ R. D. Reasenberg,⁹ T. J. Roberts,^{4,5} J. Terry⁴


¹ANL, ²Boston U., ³Fermilab, ⁴Illinois Institute of Technology, ⁵Muons, Inc., ⁶INFN Napoli, ⁷Northern Illinois U., ⁸U. Oregon, ⁹U. California San Diego CASS

* Spokesperson †Also at Zurich Instruments

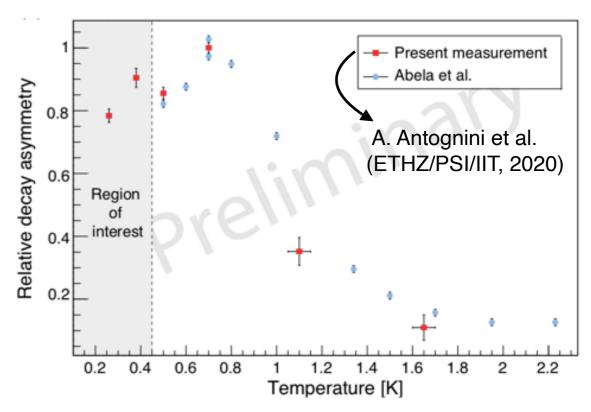
Fermilab ACE Science Meeting: Brief Remarks Session 15 June 2023


Muonium Physics Goals

Muonium (M): hydrogen-like µ+e- atom

A++

- Muonium-antimuonium (M-M) oscillations: complementary to Mu2e — *differently* sensitive to CLFV new physics
- both should be sought as sensitively as possible
- **Muonium spectroscopy:** atomic levels exquisitely predicted by QED (neither strong nor finite-size corrections)
 - → clear windows for new physics
- Muonium gravity: "tabletop" experiment sensitive to possible 5th force
 - g-2, leptonic B, & W-mass anomalies \rightarrow renewed interest
 - only way to test 2nd generation's gravitational coupling

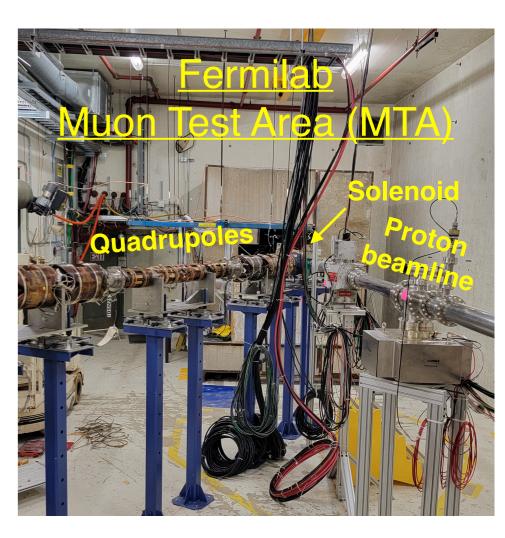


Novel Cryogenic M Source

- Want low-divergence beam of slow muonium traveling in vacuum – no such beam anywhere
- Proposals by D. Taqqu of Paul Scherrer Institute:

H immiscible in SFHe ⇒ µ_M should expel M atoms at 6,300 m/s, ⊥ to SFHe surface

- stop slow (keV) muons in ~ µm-thick layer of superfluid He (SFHe)
- or (T. Phillips, IIT) use
 ~ 100 μm SFHe layer
 for ~ 10² ↑ intensity?



- R&D in progress @ PSI & proposed @ Fermilab MTA
- essential for M gravity, potential game-changer for others

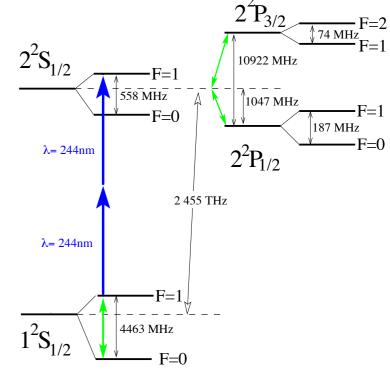
Competitive Landscape

- **PSI**: world's most intense surface-muon beams
 - best previous M-M oscillation limit (MACS, 1999)
 - new M spectroscopy experiments:
 Mu-MASS (PSI, 1S-2S); MuSEUM (J-PARC, hyperfine)
 - ∘ together with g-2 → potential μ -only α value
- **HIMB** (PSI upgrade): goal $x \approx 30$ rate increase
- **PIP-II** ("AMF"): potentially x ~10² over HIMB
- In ≈ 10 years Fermilab could be world's best
 M physics venue!
 - R&D opportunity <u>now</u> at existing "MTA" low-energy
 μ beamline @ Fermilab 400 MeV Linac (thx to μCF effort)
 - cost-effective few-M\$, few-year program
- Collaboration formed, R&D program proposed
 - beneficial spinoff: first (only) U.S. µSR facility

Conclusions

- $M \rightarrow \overline{M}$ & Mu2e complementary, both are needed
- M→M, M spectroscopy: previous results >20 years old ⇒ good time for new efforts
- M gravity: never feasible before, new technique should make it feasible: SFHe M production
- 400 MeV Linac possibly competitive with PSI
- R&D needed to establish feasibility & physics reach
- PIP-II could enable world-leading M & LE μ studies cost-effective
 - MTA: opportunity to initiate world-leading Fermilab muonium program!
 - ... while 400 MeV Linac still operational

Backup Slides

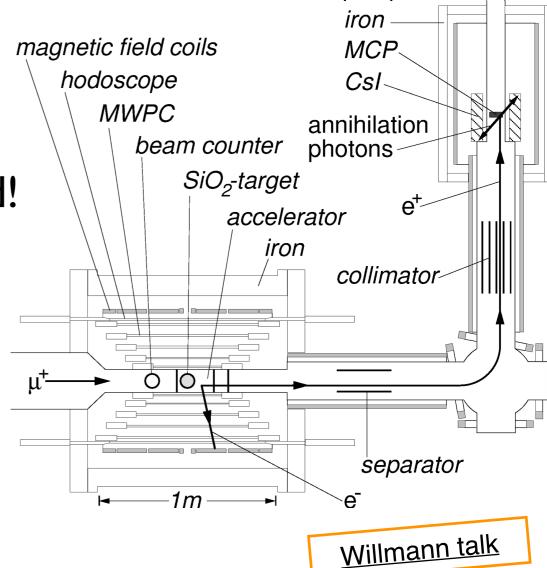

Why Muonium?

- Much known about muonium... (AKA M, or Mu)
 - a purely leptonic atom, discovered 1960

[V. W. Hughes et al., "Formation of Muonium and Observation of its Larmor Precession," Phys. Rev. Lett. **5** (1960) 63]

- decays to e^+ (fast) + e^- (slow), $\tau_M = \tau_\mu = 2.2 \, \mu s$ (bound-state correction ~10-10)

- readily produced when μ⁺ stop in matter
- chemically, almost identical to hydrogen
- atomic spectroscopy well studied


[A. Czarnecki, G. P. Lepage, W. Marciano,

invaluable for materials science

(world µSR facilities: ISIS@RAL, J-PARC, PSI, RCNP@Osaka, TRIUMF)

Muonium Double CLFV?

- Muonium-antimuonium (M- \overline{M}) oscillation simultaneous $\begin{cases} \mu^+ \to e^+ \\ e^- \to \mu^- \end{cases}$ would be doubly charged-lepton-flavor violating
- Nothing forbids it except leptonflavor conservation
 - which we know (v mixing) is violated!
 - ▶ but $M \leftrightarrow \overline{M}$ via virtual v mixing negligible
 - ➤ a background-free search for new physics!
 - ▶ in some models, more likely than $\mu N \rightarrow eN$
- Current limit set by MACS (1999) at PSI: $P_{M\overline{M}} \le 8.3 \times 10^{-11}$ (90% C.L.) in 0.1 T field

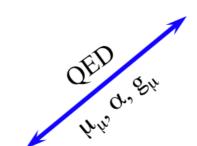
pump

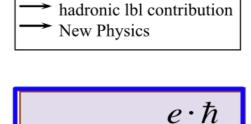
[L. Willmann et al., "New Bounds from a Search for Muonium to Antimuonium Conversion," PRL **82** (1999) 49]

Muonium Double CLFV?

- Can one now do better?
- Yes!
 - now know how to make slow, quasimonochromatic M source – a game changer!
 - based on behavior of μ^+ in superfluid He

<u>Phillips talk</u>

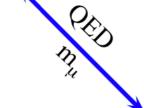

... (more in a few slides)

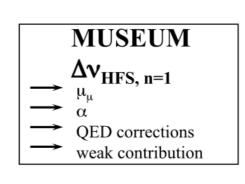

Muonium Spectroscopy

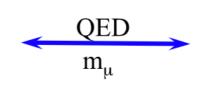
49 Page 2 of 9

Hyperfine Interact (2018)

 M IS-2S transition frequency (theory) = 2,455,528,935.4(1.4) MHz




Muon g-2


FNAL

hadronic contribution

- 0.6 ppb QED prediction!
- M atom composed of 2 point-like leptons

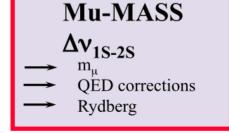


Fig. 1 Fundamental constants in the muon sector and related experiments (adapted from [42])

hadronic & finite-size corrections negligible

[P. Crivelli, "The Mu-MASS (muonium laser spectroscopy) experiment," Hyp. Int. **239** (2018) 1]

- Measured (1999) to 9.8 MHz (4 ppb) at RAL
 - & similar story for M hyperfine splitting: measured (1999) to 12 ppb at LAMPF

[V. Meyer et al., "Measurement of the 1s–2s Energy Interval in Muonium," Phys. Rev. Lett. 84, 1136 (2000); I. Fan et al., Phys. Rev. A 89, 032513 (2014)]

Muonium Spectroscopy

- New IS-2S experiment, Mu-MASS, now in R&D/commissioning stage at PSI
 - goal: improve sensitivity x1000 (<10 kHz), 4 ppt
 - systematics expected to dominate
 - PIP-II muon rate (~2 orders higher than current PSI) would help
 - will allow better handle on systematics (per Crivelli)
- Also MUSEUM in progress at J-PARC
 - goal: improve hyperfine sensitivity x10 (1 ppb)

Focusing a Beam of Ultracold Spin-Polarized Hydrogen Atoms with a Helium-Film-Coated Quasiparabolic Mirror

V. G. Luppov

Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 and Joint Institute for Nuclear Research, Dubna, Russia

W. A. Kaufman, K. M. Hill,* R. S. Raymond, and A. D. Krisch Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 (Received 7 January 1993)

We formed the first "atomic-optics" beam of electron-spin-polarized hydrogen atoms using a quasi-parabolic polished copper mirror coated with a hydrogen-atom-reflecting film of superfluid ⁴He. The mirror was located in the gradient of an 8-T solenoidal magnetic field and mounted on an ultracold cell at 350 mK. After the focusing by the mirror surface, the beam was again focused with a sextupole magnet. The mirror, which was especially designed for operation in the magnetic field gradient of our solenoid, increased the focused beam intensity by a factor of about 7.5.

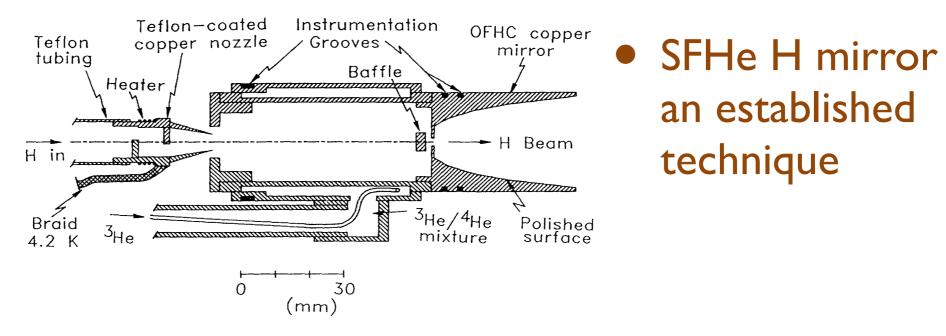
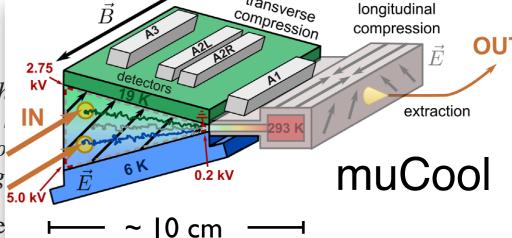


FIG. 2. Schematic diagram of the stabilization cell and mirror. The Teflon-coated copper nozzle is also shown.

Editors' Suggestion


Make M beam stoppable in ~µm SFHe layer

Demonstration of Muon-Beam Transverse Phase-Space Compression

A. Antognini, ^{1,2,*} N. J. Ayres, ¹ I. Belosevic, ^{1,†} V. Bondar, ¹ A. Eggenberger, ¹ M. Hildebrandt, ² R. Iwai, ¹ D. M. Kaplan, ³ K. S. Khaw, ^{1,‡} K. Kirch, ^{1,2} A. Knecht, ² A. Papa, ^{2,4} C. Petitjean, ² T. J. Phillips, ³ F. M. Piegsa, ^{1,§} N. Ritjoho, ² A. Stoykov, ² D. Taqqu, ¹ and G. Wichmann, ^{1,||}

(muCool Collaboration)

¹Institute for Particle Physics and Astrophysics, ETH Zürich ²Paul Scherrer Institute, 5232 Villigen-PSI, ³Illinois Institute of Technology, Chicago, Illino ⁴Dipartimento di Fisica, Università di Pisa and INFN sez. Pisa, Larg

(Received 5 April 2020; revised 17 August 2020; accepted 15 Septe

We demonstrate efficient transverse compression of a 12.5 MeV/c muon beam stopped in a helium gas target featuring a vertical density gradient and crossed electric and magnetic fields. The muon stop distribution extending vertically over 14 mm was reduced to a 0.25 mm size (rms) within 3.5 μ s. The simulation including cross sections for low-energy μ^+ -He elastic and charge exchange ($\mu^+ \leftrightarrow$ muonium) collisions describes the measurements well. By combining the transverse compression stage with a previously demonstrated longitudinal compression stage, we can improve the phase space density of a μ^+

beam by a factor of 10^{10} with 10^{-3} efficiency.

DOI: 10.1103/PhysRevLett.125.164802

Muonium Gravity: Motivation

- Possibility of "fifth force"?
 - g 2, B-decay and W-mass anomalies: possible eμ nonuniversality?
 - o stimulated extensive work
- Observable via M gravity?

[Glashow, Guadagnoli, Lane, "Lepton Flavor Violation in B Decays?" PRL **114 (2015)** 091801;

Buttazzoa, Greljoa, Isidoria, Marzocca, "B-physics anomalies: a guide to combined explanations," JHEP **2017** (2017) 44;

R. Aaij et al. (LHCb Collaboration), "Test of lepton universality in beauty-quark decays," Nat. Phys. 18 (2022) 277;

M. Alguer'o et al., "Unified explanation of the anomalies in semileptonic B decays and the W mass," PRD 106 (2022) 033005 and refs. therein;

S. L. Chen et al., "Combined explanations of B-physics anomalies, (g - 2)e, μ and neutrino masses by scalar leptoquarks," EPJC 82 (2022) 959;

M. D. Zheng et al., "Explaining anomalies of B-physics, muon g – 2 and W mass in R-parity violating MSSM with seesaw mechanism," EPJC 82 (2022) 895;

N Desai, A Sengupta, "Status of leptoquark models after LHC Run-2 and discovery prospects at future colliders, arXiv 2301.01754 (2023);

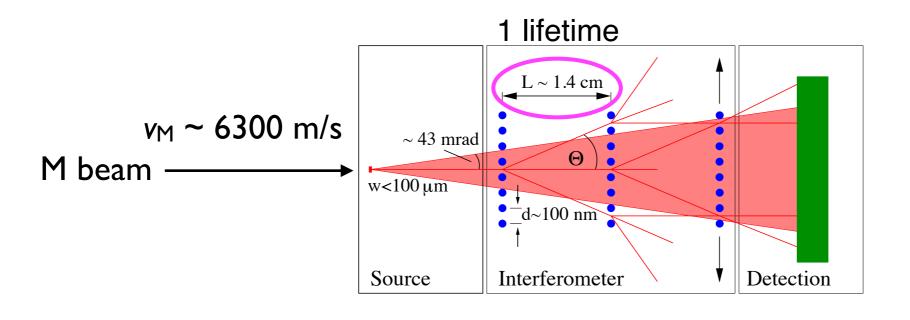
..

- what \overline{g} sensitivity required? no theor. prediction available
- Experimental Ist step: 10% measurement already worthwhile, and challenging
 - demonstrate M interferometry & calibration at several-pm level
 - can it be pushed to 1% and beyond? systematics + statistics
 - o sensible to start with 10% and proceed step by step

Muonium Gravity: Motivation

- Weak Equivalence Principle of GR:
 - > composition-independent gravitational acceleration
 - assumed to apply to antimatter, but need not in quantum gravity
 - could imply simpler alternative cosmology
- [M. M. Nieto, T. Goldman, "The Arguments Against 'Antigravity' and the Gravitational Acceleration of Antimatter," Phys. Rep. 205, 221–281 (1991)]

[see e.g. A. Benoit-Lévy and G. Chardin, "Introducing the Dirac-Milne universe," Astron. & Astrophys. 537 (2012) A78]


- o M provides only possible 2nd-generation gravitational test
- No direct test of antimatter gravity has yet been made
- Best limit ($\Delta g/g \lesssim 10^{-7}$):

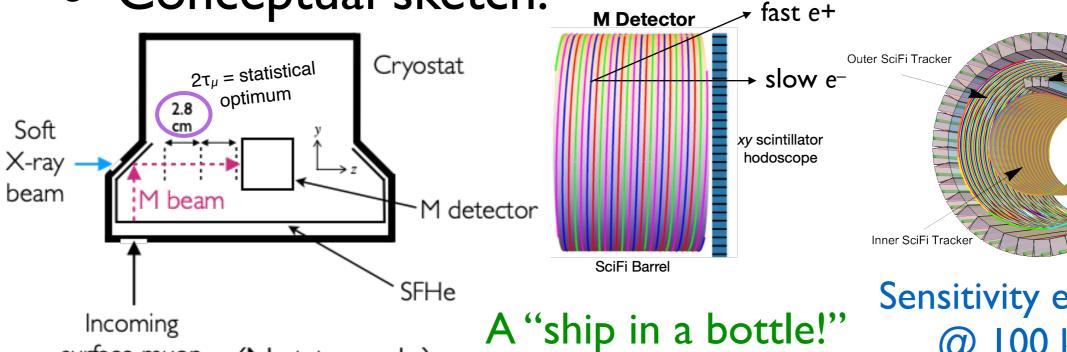
 [D.S.M. Alves, M. Jankowiak, P. Saraswat, "Experimental constraints on the free fall acceleration of antimatter," arXiv:0907.4110 [hep-ph]] torsion pendulum ("Eöt-Wash") & lunar laser ranging
 - relies on assumed virtual-antimatter contribution to nuclear binding energy – untested assumption, inapplicable to M
 - well worth a direct test!

Testing Gravity with Muonium

K. Kirch*
Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
(Dated: February 2, 2008)

arXiv:physics/0702143v1 [physics.atom-ph]

 $\frac{1}{2}$ gt² = 24 pm!


but grows as $t^2 \Rightarrow$ easier problem with *old* muonium

Need

- very precise atom interferometer
- low-divergence, low- $\Delta p/p$ muonium beam

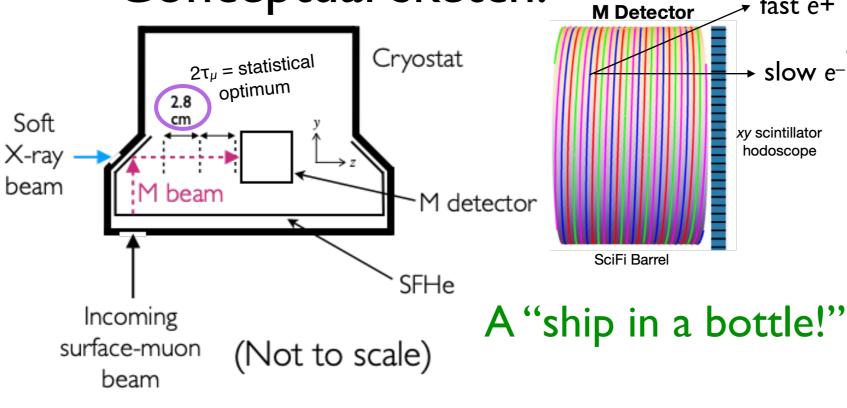
Conceptual sketch:

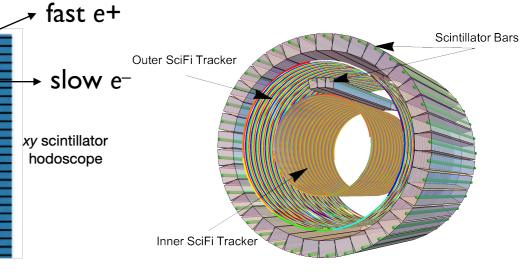
(Not to scale)

Sensitivity estimate

Scintillator Bars

$$S = \frac{1}{C\sqrt{N_0}} \frac{d}{2\pi} \frac{1}{\tau^2}$$


 $\approx 0.3 \,\mathrm{g} \,\mathrm{per} \,\sqrt{\mathrm{\#days}}$


- well-known property of SFHe to coat surface of its container
- 45° section of cryostat reflects vertical M beam emerging from SFHe surface into the horizontal

surface-muon

beam

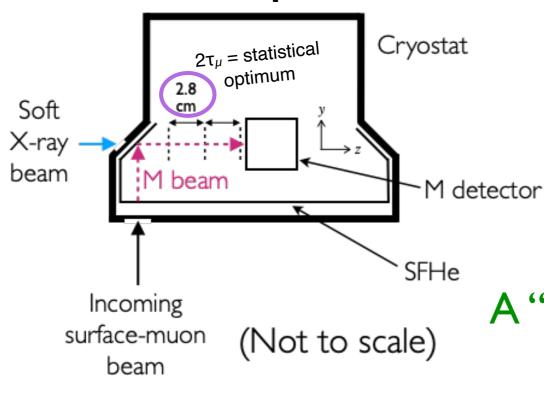
Conceptual sketch:

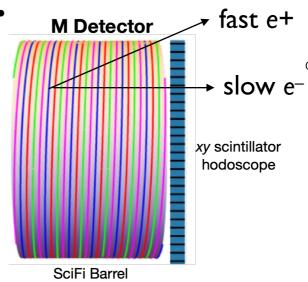
Sensitivity estimate

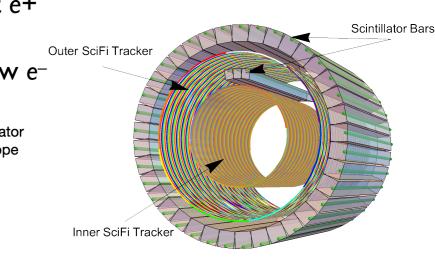
@ 100 kHz:

$$S = \frac{1}{C\sqrt{N_0}} \frac{d}{2\pi} \frac{1}{\tau^2}$$

sign of $\overline{\rm g}$ with 1 day's data where


C = 0.3 (est. contrast)


 $N_0 = \#$ of events


d = 100 nm (grating pitch)

 τ = inter-grating time

Conceptual sketch:

A "ship in a bottle!"

Sensitivity estimate

@ 100 kHz:

$$S = \frac{1}{C\sqrt{N_0}} \frac{d}{2\pi} \frac{1}{\tau^2}$$

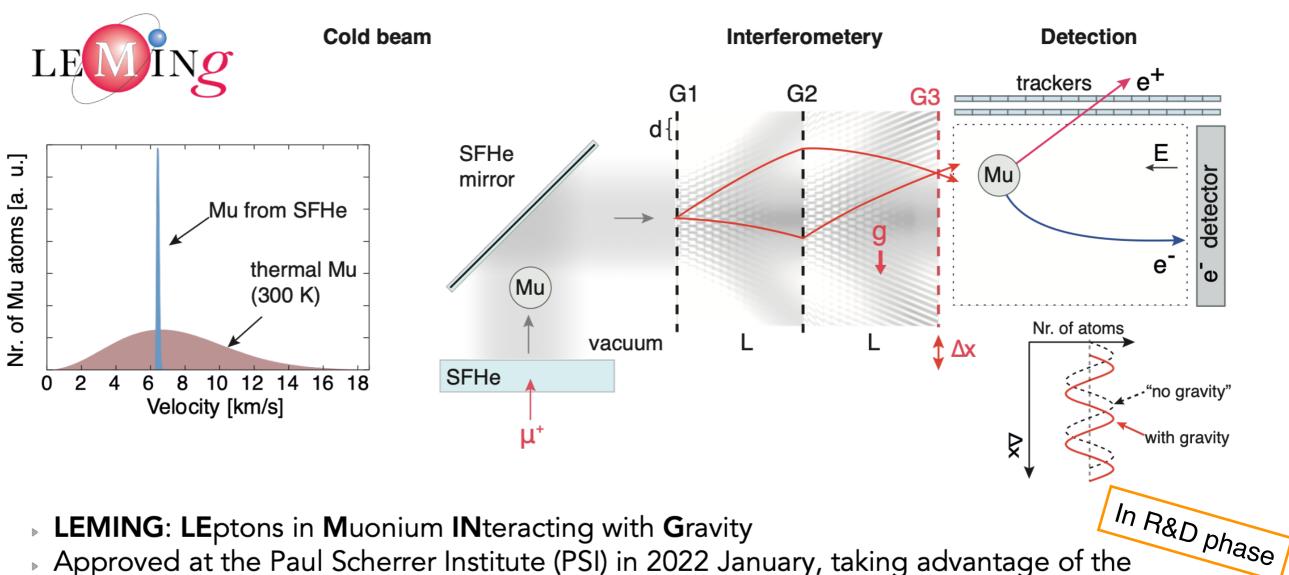
sign of g with 1 day's data wi

 $\sim \approx 0.3 \,\mathrm{g} \,\mathrm{per} \,\sqrt{\mathrm{\#days}}$

where

C = 0.3 (est. contrast)

 $N_0 = \#$ of events

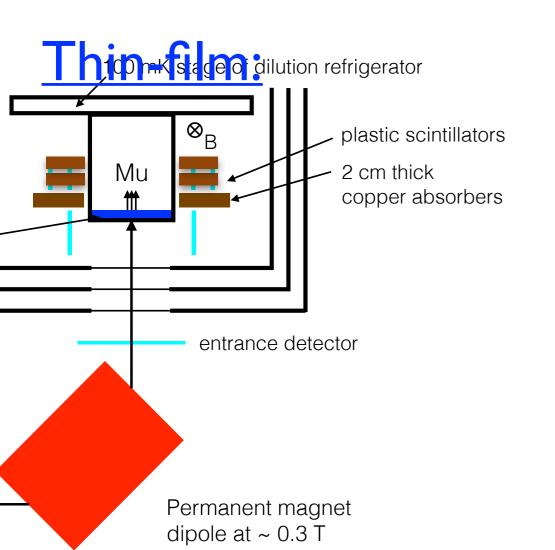

d = 100 nm (grating pitch)

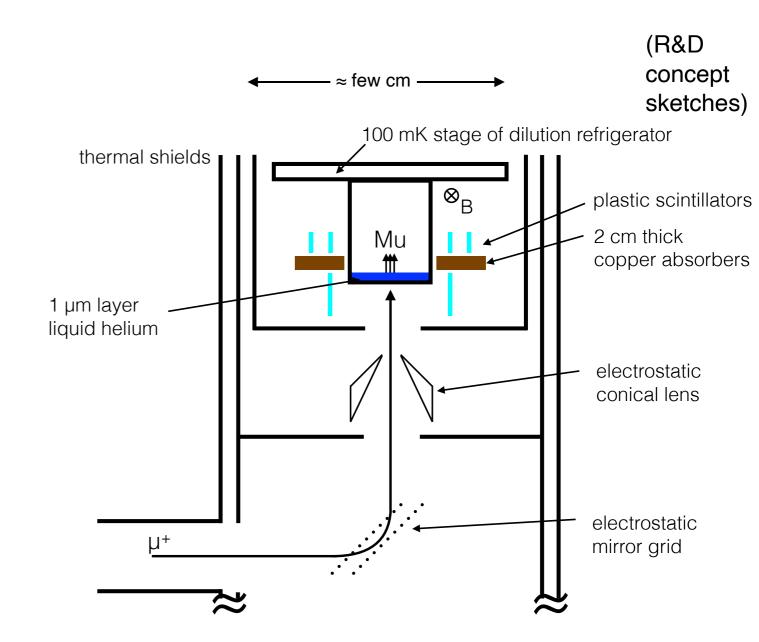
 τ = inter-grating time

Muonium Antimatter ^d_τ
 Gravity Experiment (MA

The (friendly) "Competition"

The LEMING experiment at PSI, Switzerland


- Approved at the Paul Scherrer Institute (PSI) in 2022 January, taking advantage of the world's highest intensity cw muon source.
- A novel, ultracold muonium beam development for next generation laser spectroscopy and atom interferometry to measure the gravitational acceleration of (anti)leptons


doi: 10.21468/SciPostPhysProc.5.031

Anna Soter, ETH Zurich

17

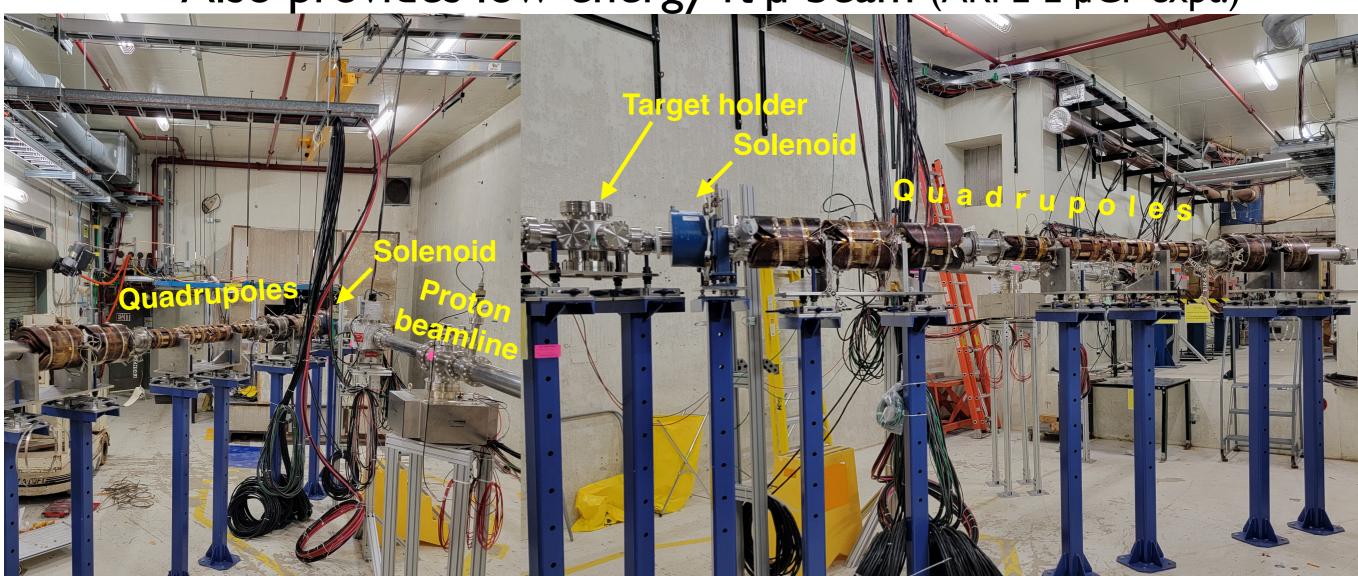
Thick-film:

The Context: World Low-Energy µ Beams

Table 1: Comparison of Surface Muon Facilities and Mu2e

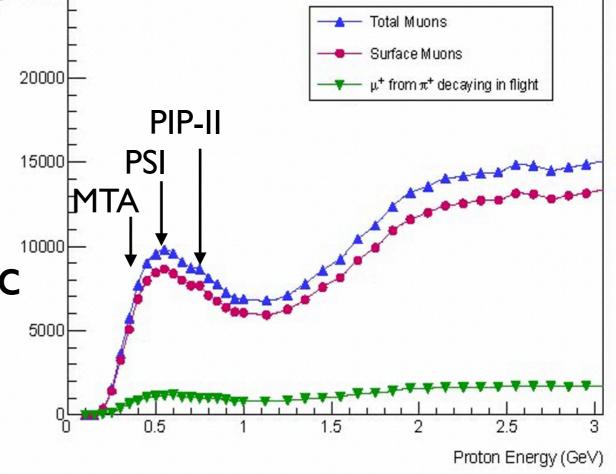
Facility	Max. (sur	rface) μ rate (Hz)	Type	Comments
PSI [14]	Switzerland	9×10^{8}	CW	
TRIUMF [15]	Canada	2×10^6	CW	
MuSIC at Osaka [16]	Japan	10^{8}	CW	
J-PARC [17]	"	6×10^7	pulsed	
 ISIS [17]	UK	6×10^5	pulsed	
HIMB at PSI [13]	Switzerland	10^{10}	CW	(design goal)
Mu2e at Fermilab		10^{11}	pulsed	Not surface muons: $p_{\mu} \approx 40 \mathrm{MeV}/c$
Mu2e with PIP-II		10^{12}	pulsed	Not surface muons: $p_{\mu} \approx 40 \mathrm{MeV}/c$

- Used for fundamental physics, µSR (MatSci, chemistry), µCF R&D...
- Oversubscribed, until now none in U.S.
- PSI: current world leader
 - x10 upgrade ("HIMB") in the works


[R. H. Bernstein et al., "Letter of Interest for an Upgraded Low-Energy Muon Facility at Fermilab," SNOWMASS21-RF0-AF0-007]

- PIP-II could surpass HIMB (by ~ x10²?)
- Is FNAL 400 MeV Linac potentially competitive with PSI???
 - at minimum, invaluable
 R&D opportunity John

Fermilab "MuCool Test Area"


- Built ~20 years ago for muon collider R&D
 - served by 400 MeV H⁻ Linac
 - can be Linac major user <10% (?) goes to Booster
- Now repurposed as Irradiation Test Area (ITA)

Also provides low-energy π/μ beam (ARPE-E μCF expt.)

Fermilab vs. PSI

- PSI: 590 MeV sectorfocused p cyclotron
- MTA: 400 MeV H- linac
- PIP-II: 800 MeV SC H- linac
 - ~ a wash: <15% PSI advantage
- PSI makes surface muon beams "parasitically"

Variation of μ^+ yield with incident proton energy for muons with momenta ≤ 30 MeV/c; i.e. surface muons

[A. Bungau, R. Cywinski, C. Bungau, PRSTAB 16, 014701 (2013).]

- not to disrupt proton beam before spallation-n production target \Rightarrow thin, low-Z target ($\approx 6-40$ mm C)
- MTA: can use thick, high-Z target, e.g., 3 cm W ($\div n_{\text{slices}}$)

Benefits of High-Z Target

- Ta (Z = 73) target increases π^+ (hence μ^+) yield by factor 2.9 over graphite
 - expect similar factor for W (Z = 74) since

 π^+ yield $\sim Z^{1/3}$ TABLE XII. Total cross sections for π^+ and π^- .

(per Geant)
 enhances
 backward
 production,
 obviating PSI 90°
 advantage

Element	σ+	σ	Ratio
Н	13.50 ± 0.73	0.03 ± 0.01	45
D	11.42 ± 0.55	1.12 ± 0.06	10.2
Be	27.30 ± 1.40	6.49 ± 0.37	4.3
\mathbf{C}	35.00 ± 1.80	6.64 ± 0.41	5.3
A1	53.10 ± 2.90	13.17 ± 0.90	4.0
Ti	67.00 ± 3.60	21.20 ± 1.60	3.2
Cu	77.30 ± 4.30	25.20 ± 2.0	3.1
Ag	91.60 ± 5.10	35.00 ± 3.0	2.6
Ta	101.00 ± 5.60	51.40 ± 4.70	2.0
Pb	104.20 ± 5.80	53.70 ± 4.90	1.95
Th	107.90 ± 5.90	60.40 ± 5.50	1.9

[D.R.F. Cochran *et al.*, "Production of Charged Pions by 730-MeV Protons from Selected Nuclei," Phys. Rev. D **6**, 3085 (1972)]

Comparing MTA and PSI

Relative rate estimates:

	PSI	MTA	MTA/PSI
Proton Beam Power (MW)	1.2	0.008*	0.0067
Target	$40 \text{ mm C} = 0.103 \lambda_{l}$	$30 \text{ mm W} = 0.302 \lambda_{l}$	2.9
σ _{π+} (mb)	35	101 [†]	2.9×0.85
μ+ survival	≈ 0.001	1	1000
μ+→M conversion	≈ 0.5	≈ 0.1	0.2
Net			≈10(?)

≈x200 SFHe thick-film advantage – needs R&D to confirm

- Further improvement possible (e.g., multiple target slices, optics & target optimization)
 - current simulations see $\approx 10^{-9}$ surface μ/POT
 - need full simulation study (in progress)

^{*} Assumes MTA shielding allows full Linac intensity +

[†] Using Ta as proxy for W due to lack of W data

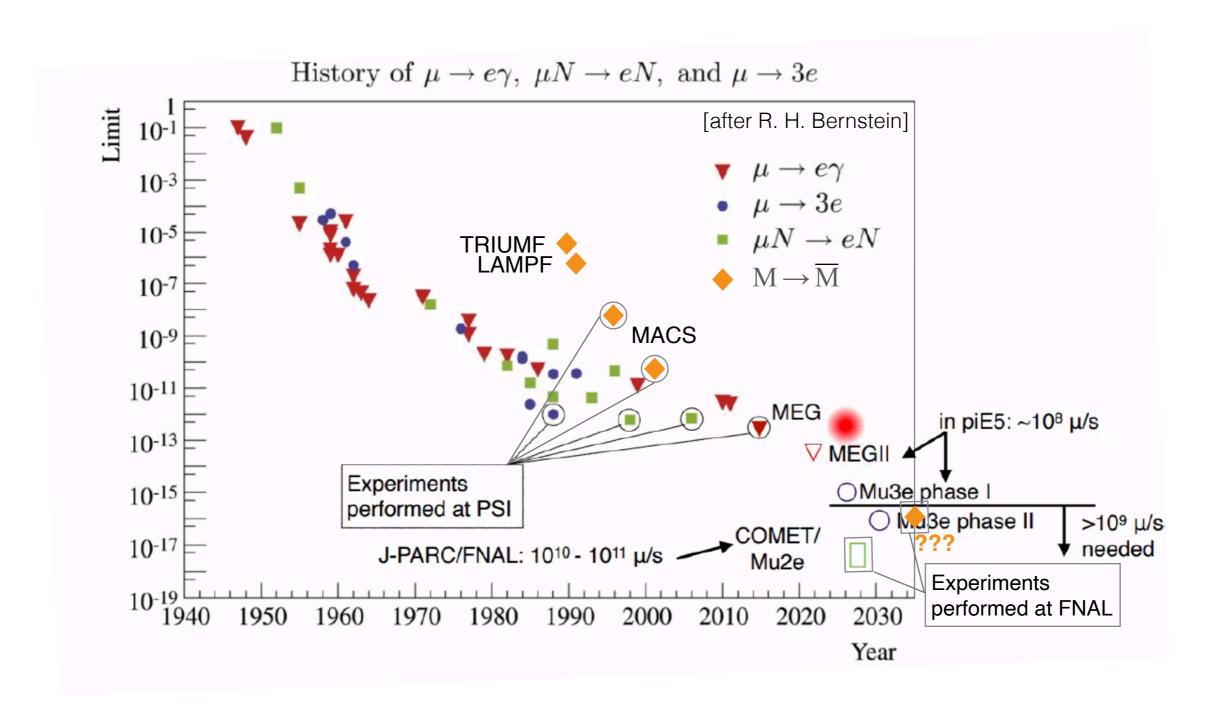
PIP-II Potential

(via RF-separated beams)

 Assume optimistic PIP-II bunch rate to new lowenergy muon (LEM) facility (yet to be designed):

	PSI	HIMB*	PIP-II	PIP-II/HIMB
Proton Beam Power (MW)	1.2	1.2	4	3.3
Bunch Intensity	CW	CW	1.9×10 ⁸	
Bunch Rate	CW	CW	162.5 MHz	
Bunch Rate (LEM)	CW	CW	81.25 MHz	
Target	40 mm C = 0.103 λ _ι	20 mm C (eff.), optimal slant	30 mm W = 0.302 λ _ι	2.9
σ _{π+} (mb)	35	35	101†	2.9×0.85
μ+ Capture	6%	26%	TBD‡	1‡
Transmission	7%	40%	TBD‡	1‡
μ+ Rate (Hz)	5×10 ⁸	1.3×10 ¹⁰	$\approx 3 \times 10^{11}$	≥ 20(?)

needs R&D to confirm


- additional \approx x200 if HIMB thin-film SFHe and PIP-II thick

^{*} Design values [E. Valetov, FNAL APT Seminar, 9/8/22]

[†] Using Ta as proxy for W due to lack of W data

[‡] Assume PIP-II design comparable to HIMB

PIP-II Muonium Potential

PIP-II Muonium Potential

• Is M- \overline{M} sensitivity > order of magnitude worse than Mu2e sensitivity worth pursuing?

Brief R&D Goal Summary

- Determine and optimize MTA μ⁺ yield
- Determine and optimize conditions to maintain drift field in SFHe (~10⁸ e/cm²)*
 - including electron-replenishment efficiency at high rate and resulting dead time (if any)
- Determine conditions to maximize M production in thick-film SFHe (requires dilution refrigerator)
- (If above results favorable) Assemble and install M interferometer and measure M gravity

^{*} as done by e.g. C F Barenghi *et al.*, "Experiments on ions trapped below the surface of superfluid ⁴He," J. Phys. C: Solid State Phys. **19** (1986) 1135; http://stacks.iop.org/0022-3719/19/i=8/a=012

Resource Needs

- Modest, ≈ few-M\$ program: beamline already installed; additional incremental work in MTA needs only "opportunistic" downtimes
- Concept and technical design study, dilution fridge and labor supported from external grants
 - Lab endorsement of R&D program a prerequisite for successful future grant proposals
- Will submit funding proposal in Feb.
 - Can potentially fund dilution fridge
- Without dilution fridge can start SFHe R&D using IIT equipment; BUT source of helium (on allocation) required
 - We request bench space @ Fermilab with modest helium supply
- Will submit R&D beam-time request to FTBF

Conclusions

- $M \rightarrow \overline{M}$ & Mu2e complementary, both are needed
- M→M, M spectroscopy: previous results >20 years old ⇒ good time for new efforts
- M gravity: never feasible before, new technique should make it feasible: SFHe M production
- 400 MeV Linac possibly competitive with PSI
- R&D needed to establish feasibility & physics reach
- PIP-II could enable world-leading M & LE μ studies
 - Cost-effective

 MTA: opportunity to initiate world-leading
 Fermilab muonium program!

 Would
 - ... while 400 MeV Linac still operational

Examples of models possibly favoring M→M

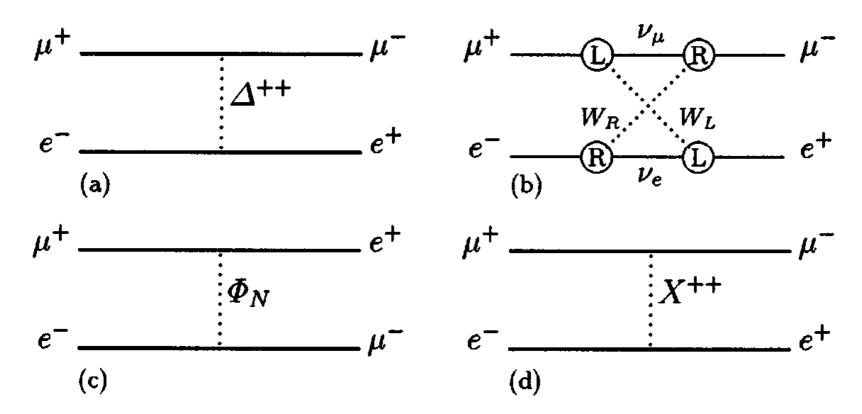


FIG. 1. Muonium-antimuonium conversion in theories beyond the standard model. The interaction could be mediated, e.g., by (a) doubly charged Higgs boson Δ^{++} [3,4], (b) heavy Majorana neutrinos [3], (c) a neutral scalar Φ_N [5], e.g., a supersymmetric τ -sneutrino $\tilde{\nu}_{\tau}$ [6,7], or (d) a bileptonic flavor diagonal gauge boson X^{++} [8,9].

[L. Willmann et al., "New Bounds from a Search for Muonium to Antimuonium Conversion," PRL 82 (1999) 49]

"Antigravity"

- What if matter and antimatter repel gravitationally?
 - → universe with separated matter and antimatter regions (& makes gravitational dipoles possible)
 - BAU is local, not global ⇒ no need for new sources of CPV

[A. Benoit-Lévy and G. Chardin, "Introducing the Dirac-Milne universe," Astron. & Astrophys. 537 (2012) A78]

- repulsion changes expansion rate of universe
 - possible explanation for apparent acceleration – without dark energy

[D. Hajdukovic, "Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem?," Astrophys. Space Sci. 339 (2012) 1]

 all regions of universe causally connected & older than oldest stars

[A. Benoit-Lévy and G. Chardin, ibid.]

- virtual gravitational dipoles modify gravity at long distances
 - possible explanation for rotation
 curves without dark matter
- [L. Blanchet, "Gravitational polarization and the phenomenology of MOND," Class. Quant. Grav. 24, 3529 (2007);
- L. Blanchet and A.L. Tiec, "Model of dark matter and dark energy based on gravitational polarization," PRD 78, 024031 (2008)]

(from Beam Instrumentation Group): Lab interest in MTA W target

Radiation Testing for PIP-II Beam Instrumentation

Understanding response and survival of various beam instrumentation components in a radiation environment is a challenge for PIP-II. The radiation test area at the end of Fermilab linac is an ideal location to study radiation effect.

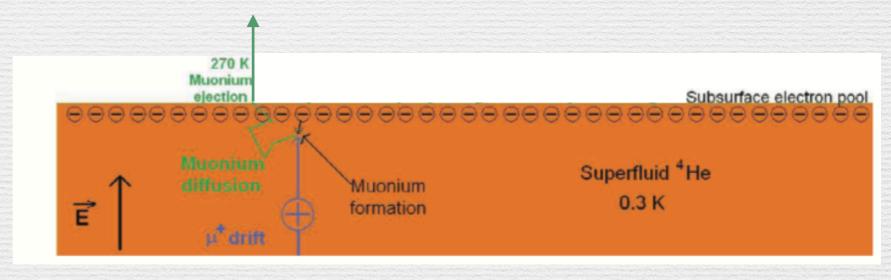
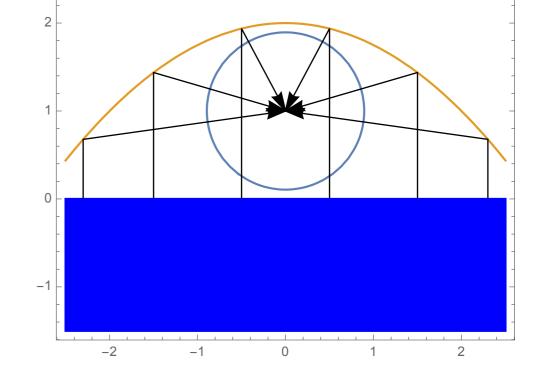
Linac beam energy of 400 MeV is similar to PIP-II linac

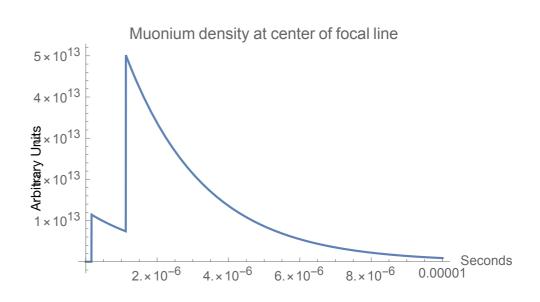
Potential areas of study include:

- Testing of PIP-II neutron detectors
- Testing electronics for radiation damage
- Interest from vendors to test radiation hardened electronics
- Testing of radiation damage to optical components needed for PIP-II laser wire profile monitor

Thick-Film SFHe Method

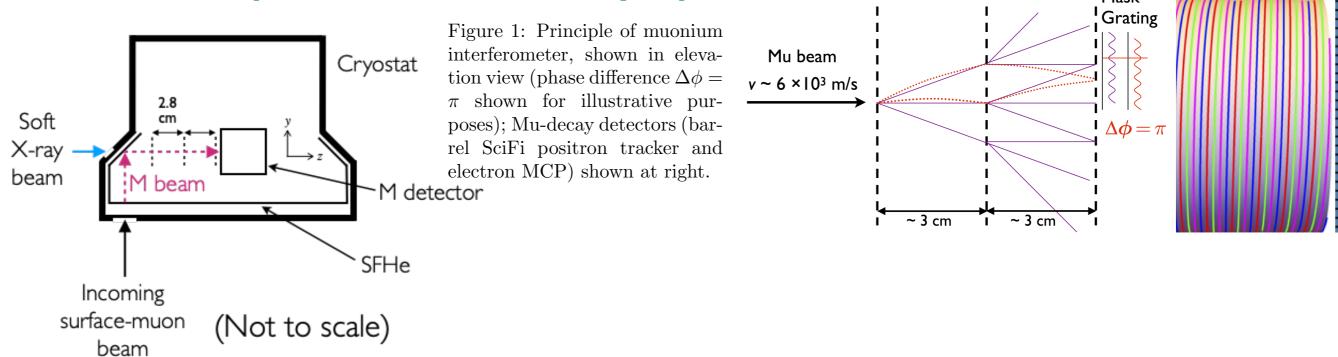
Stop µ+ in bulk
SFHe
Drift to surface
with E field before
forming Mu
Form Mu with
surface e-


Figure after D. Taggu / Physics Procedia 17 (2011) 216-223

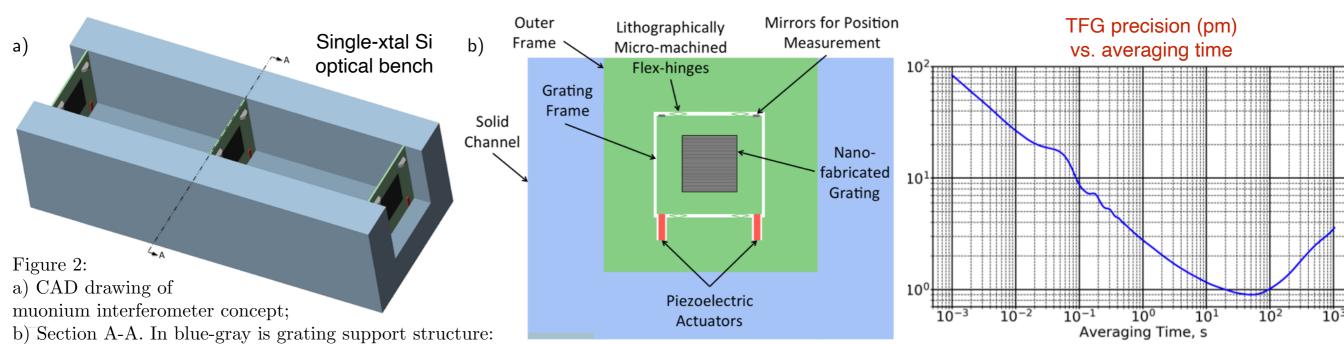
Making Cold µ⁺ from M

- Putting 2D parabolic mirror above SFHe concentrates M beam along a line
- Laser-ionize M to produce 0.5K μ+
- Engineering challenge: extract cold µ+ from cryostat


- Simulation at right shows intensity vs time following incident µ+ pulse
- Mirror increases M density ≈ 5X (dep. on beam size & concentrator height)

Could PSI Adopt Thick-Film SFHe Approach?

- Yes, but they're committed to muCool beam for multiple cold-muon applications
- And in practice, difficult and time-consuming switch
 - we proposed it to them, deemed impractical because:
 - their group too small to pursue multiple approaches in ||
 - muCool → very different apparatus optimization: much lower energy & thinner, smaller-diameter cryostat windows
 - ⇒ would need additional dilution fridge to pursue both


Important feasibility questions:

- I. Can sufficiently precise diffraction gratings be fabricated?
- 2. Can interferometer and detector be aligned to a few pm and stabilized against vibration?
- 3. Can interferometer and detector be operated at cryogenic temperature?
- 4. How determine zero-degree line?
- 5. Does Taqqu's scheme work?

Answering the Questions:

- I. Can sufficiently precise diffraction gratings be fabricated?
 - our collaborator, Derrick Mancini (a founder of ANL Center for Nanoscale Materials, CNM), thinks so; CNM boasts sub-nm precision – simulation study in progress
- 2. Can interferometer be aligned, and stabilized against vibration, to several pm?
 - needs R&D, but LIGO & TFG do much better than we need
 - our NASA space-telescope TFG R&D ⇒ sufficient performance

a U-channel machined out of a single-crystal silicon block. Each grating is mounted in a silicon frame connected to an outer frame by flex-hinges; piezo-actuator pair permits small rotations to align the gratings precisely in parallel, as well as scanning of grating 3. Grating frames have mirrors or corner-cube retroflectors at top corners that form part of the laser distance gauges (TFGs) used to measure their position.

Figure 3. Allan deviation indicating TFG incremental-distance precision vs averaging time. From Kaplan, D.M.; Roberts, T.J.; Phillips, J.D.; Reasenberg,

R.D. Improved performance of semiconductor laser tracking frequency gauge. J. Instrum. 2018, 13, P03008.

Answering the Questions:

- I. Can sufficiently precise diffraction gratings be fabricated?
 - our collaborator, Derrick Mancini (a founder of ANL Center for Nanoscale Materials, CNM), thinks so; CNM boasts sub-nm precision – simulation study in progress
- 2. Can interferometer be aligned, and stabilized against vibration, to several pm?
 - needs R&D, but LIGO & TFG do much better than we need
 - our NASA space-telescope TFG R&D ⇒ sufficient performance
- 3. Can interferometer and detector be operated at cryogenic temperature?
 - needs R&D; at least piezos OK; material properties favorable
- 4. How determine zero-degree phase?
 - use cotemporal soft X-ray beam
- 5. Does Taqqu's scheme work?
 - needs R&D; we're working on it with PSI & ETHZ

Cryostat

SFHe

M detector

D. M. Kaplan, IIT

Soft

X-ray beam