

The KPIPE Concept

J. Spitz (Michigan) 6/15/2023 ACE Science Workshop

KPIPE

Axani, Collin, Conrad, Shaevitz, Spitz, Wongjirad, Phys. Rev. D 92 092010 (2015)

The idea:

Use a very long liquid scintillator detector to look for v_{μ} disappearance (in L) using 236 MeV KDAR v_{μ} CC events

Long LS detector surrounded by SiPMs

example @ J-PARC MLF

Axani, Collin, Conrad, Shaevitz, Spitz, Wongjirad, Phys. Rev. D 92 092010 (2015)

(1) pure, mono-energetic flux of muon neutrinos (2) long detector to measure the oscillation wave

KPIPE

Axani, Collin, Conrad, Shaevitz, Spitz, Wongjirad, Phys. Rev. D 92 092010 (2015)

A very pure flux of KDAR neutrinos!

Since you know the energy of the neutrino, you don't need to worry about energy resolution. KPIPE calls for 0.4% photocoverage.

Estimated cost of experiment: \$4.5M

KPIPE cost document: http://hdl.handle.net/1721.1/98388

KPIPE; what would a signal look like?

 $E_v=236 \text{ MeV}$

KPIPE sensitivity

Experimental assumptions Detector length 120 m Active detector radius 1.45 m Closest distance to source 32 m Liquid scintillator density 0.863 g/cm^3 684 tonsActive detector mass Primary proton energy 8 GeV Hg or W Target material KDAR ν_{μ} yield (MARS15) $0.07 \nu_{\mu}/\text{POT}$ $1.3 \times 10^{-39} \text{ cm}^2/\text{neutron}$ ν_{μ} CC σ @ 236 MeV (NuWro) KDAR signal efficiency 77%Vertex resolution 80 cm Light yield 4500 photons/MeV 5000 hours/year Uptime (5 years) ν_{μ} creation point uncertainty 25 cm**PIP-II** era assumptions 1.0×10^{21} POT/year Proton rate (0.08 MW) 1.6×10^{-5} Beam duty factor Cosmic ray background rate 110 Hz 2.7×10^4 events/year Raw KDAR CC event rate RCS upgrade era assumptions 1.5×10^{22} POT/year Proton rate (1.2 MW) 5.3×10^{-5} Beam duty factor 360 Hz Cosmic ray background rate 4.0×10^5 events/year Raw KDAR CC event rate

3+1 osc. model

KPIPE sensitivity

