Fermilab **BENERGY** Office of Science

A Dedicated Muon EDM Experiment in the `g-2' Storage Ring

A. Narayanan, E. Bottalico, A. Driutti, O. Kim, J. P. Morgan, D. Stratakis, M. Syphers, G. Venanzoni

Fermilab ACE Science Workshop, Batavia June 15, 2023

Thomas-BMT Equation

The total precession frequency $\overrightarrow{\Omega}_S$ of the spin in the presence of \overrightarrow{B} and \overrightarrow{E} (both $\perp \overrightarrow{p}$) would be the net sum of MDM precession and the EDM precession, given by the Thomas-BMT equation:

$$\vec{\Omega}_{S} = -\frac{q}{m} \left[G\vec{B} - \left(G - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \underbrace{\frac{\eta q}{2mc} \left[\vec{E} + c\vec{\beta} \times \vec{B}\right]}_{EDM}$$

If the magnetic field is purely vertical and the electric field is purely radial,

- ◆ MDM spin precession would be about the vertical axis in the plane of the ring
- EDM spin precession would be about the radius tipping vertically out of the plane of the ring

The `g-2' Storage Ring (at present)

• The current `g-2' storage ring is being operated for measuring the magnetic dipole moment (MDM) of the muon primarily caused by the vertical magnetic field \vec{B} .

The precession frequency Ω_{MDM} is given by:

⁽Figure: Anna Driutti)

$$\vec{\Omega}_{MDM} = -\frac{q}{m} \left[G \vec{B} - \underbrace{\left(G - \frac{1}{\gamma^2 - 1} \right)}_{\vec{P}} \vec{B} \times \vec{E} \right]$$

- The relativistic γ is chosen such that the second term is zero, operating at muon's 'magic momentum' of 3.09 GeV/c.
- The ring has a radius of 7.112 meters and is four-fold symmetric.
- It has a highly purified constant vertical dipole magnetic field throughout and four isometrically placed electrostatic quadrupoles for vertical focussing.
- Each 90 degree section consists of:
 - 51 degrees of dipole \vec{B} -field only region (~ 57%)
 - 39 degrees of (dipole \vec{B} + quadrupole \vec{E}) region (~ 43%)
- There are no dipole electric fields in the `g-2' storage ring at present.

Proposed Scheme - A Hybrid Storage Ring

We propose an idea of freezing the MDM precession and enhancing the EDM signal by introducing a dipole electric field in the electrostatic quadrupole sections.

The idea:

- 1. The μ^+ traverses through 51° \overrightarrow{B} -only section.
- 2. The MDM component of the spin precession increases by an amount ϕ_{MDM} due to the \overrightarrow{B} -field.
- 3. The μ^+ then enters the 39° section $\vec{E} + \vec{B}$ section.
- 4. The dipole \vec{E} field (along with \vec{B}) in the 39° section is chosen such that the MDM precesses the spin in the opposite direction by the same amount $-\phi_{MDM}$

Frozen spin

Precession in horizontal plane

Which momentum to choose?

Operation points for 'Muon d-0' (r = 7.112 m)

The electric field is a strong decider of the muon central momentum.

	Momentum (MeV/c)	Vertical Magnetic Field (Tesla)	Radial Electric Field (MV/m)
	100	0.046	0.048
·	200	0.092	0.300
, [280	0.131	0.769
	400	0.180	2.113
	500	0.220	3.963

Frozen spin constraint:

$$\vec{E} - \vec{B} \cdot \left[\frac{Gc}{|\beta|} \frac{90^{\circ}}{39^{\circ}} \left(G - \frac{1}{\gamma^2 - 1} \right)^{-1} \right] = 0$$

`g-2' ring orbit constraint:

$$\overrightarrow{E} + v\overrightarrow{B} = \gamma \frac{mv^2}{qR_{ring}}\hat{r}$$

Making use of PIP-II Protons

Assumed Particle Rates for PIP-II

RMS Current from PIP-II Linac	0.002 A
Pulse length for `g-2' storage ring	120 ns
No. of PIP-II bunches per EDM pulse	19.5
Protons per EDM pulse	1.5×10^{9}
Good pions/muons off the target	18000
Muon storage duration	10 lifetimes = 83 microseconds
Muons stored per year	9×10^{11}

Direct EDM Measurement Sensitivity

‡ Fermilab

9 Date Presenter I Presentation Title

THANK YOU!

We would like to thank and also acknowledge the following for their continued work and valuable suggestions on this venture:

Brendan Casey Joe Price Sam Grant Hogan Nguyen Yannis Semertzidis Dominika Vasilkova

Questions

Q: How does the experiment make use of the ACE beam? A: Usage of the proton pulses from the PIP-II linac. Higher the PIP-II beam intensity, higher the muon production.

Q: Is the experiment uniquely enabled by The ACE upgrades? A: The proton intensity given out by the PIP-II linac provides a near-perfect window for creating muons in the interested range of momentum ideal for a frozen-spin EDM experiment.

Q: Can this experiment be performed elsewhere? A: The `g-2' storage ring offers a unique capability for a spin precession experiment. (In fact, the best present μ -EDM bound comes from BNL `g-2' run.)

Q: What proton energies are needed? A: 800 MeV protons.

Q: What proton quantities are needed? A: Greater than 1.5×10^9 protons per EDM pulse.

Q: What time structure is needed? (bunch length, train structure) A: Greater than 19.5 PIP-II bunches per EDM pulse.

Q: Can the experiment be performed with 800 MeV protons from PIP-II? A: Absolutely!

Freezing the MDM Precession

The amount of spin's MDM precession in the 51° of \vec{B} -only region is given by:

$$\phi_{MDM, B} = \frac{q}{m} GB \cdot \frac{51^{\circ}}{90^{\circ}} \frac{T_{\text{rev}}}{4}$$

The amount of spin's MDM precession in the $\vec{E} + \vec{B}$ -only region is given by:

$$\phi_{MDM, E+B} = \frac{q}{m} \left[GB - \left(G - \frac{1}{\gamma^2 - 1}\right) \frac{\beta \cdot E}{c} \right] \cdot \frac{39^\circ}{90^\circ} \frac{T_{\text{rev}}}{4}$$

🛟 Fermilab

Equating them both, we can solve for the electric field value needed to cancel the MDM precession accumulated in the \vec{B} -only section.

Finding the \overrightarrow{E} and \overrightarrow{B} field values

Simplifying the equation for frozen MDM precession, we have a linear equation in E and B:

$$\overrightarrow{E} - \overrightarrow{B} \cdot \left[\frac{Gc}{|\beta|} \frac{90^{\circ}}{39^{\circ}} \left(G - \frac{1}{\gamma^2 - 1} \right)^{-1} \right] = 0 \qquad \text{CONSTRAINT #1}$$

Since we look to re-use the `g-2' storage ring, the radius of the ring imposes a condition via the centripetal Lorentz force required to keep the muons on the 7.112 meter orbit:

$$\vec{E} + v\vec{B} = \gamma \frac{mv^2}{qr}\hat{r}$$
 CONSTRAINT #2

🚰 Fermilab

(Since we could use both E and B-fields in the ring, there is no constraint to operate on the magic momentum anymore.)

The above two constraints thus give us two linear equations in \overrightarrow{E} and \overrightarrow{B} which we can solve for various values of momentum (γ) for possible operational value of fields.

If achieved in time, this could be the first ever demonstration of frozen spin technique technique!

‡ Fermilab

Possible field values for frozen MDM condition:

4 0.20 - 3 0.15 -2 1 0.05 0.00 0 100 200 300 500 0 400 Momentum (MeV/c)

Vertical Radial Electric Momentum Magnetic Field Field (MeV/c) (MV/m)(Tesla) 0.046 0.048 100 0.092 0.300 200 280 0.131 0.769 0.180 2.113 400 500 0.220 3.963

Er (MV/m)

‡ Fermilab

Operation points for 'Muon d-0' (r = 7.112 m)

E-field vs momentum

‡ Fermilab

Plate separation vs E-field

‡ Fermilab

Plate Separation [cm] vs E-field [MV/m]

Beam Dynamics

The next question: with both electric and magnetic dipole fields, can we have a stable closed orbit inside the ring with frozen MDM precession conditions?

The answer is: YES!

Only that the stable closed orbit will not be a perfect circle anymore.

🛠 Fermilab

Beam Dynamics

The next question: with both electric and magnetic dipole fields, can we have a stable closed orbit inside the ring with frozen MDM precession conditions?

The answer is: YES!

Only that the stable closed orbit will not be a perfect circle anymore.

How large are these deviations from the 7.112 meter orbit?

😤 Fermilab

Closed Orbit - Geometric Analysis

With some geometric analysis, we find that,

 $r = r_2 = R_e + a\sqrt{2} \qquad r_0 = R_b[1 - \cos(\theta_b) + \sin(\theta_b)] + R_e[\cos(\theta_b) - \sin(\theta_b)]$

$$r_2 = \sqrt{2}R_b \sin\theta_b + R_e(1 - \sqrt{2}\sin\theta_b)$$

For example, with the parameters of

 $\vec{p} = 387 \text{ MeV/c},$ $\vec{E} = 1.98 \text{ MV/m},$ $\vec{B} = 0.178 \text{ T},$

the maximum radial orbital variations from the 7.112 meters circular orbit are only ± 10.9 mm!

Closed Orbit - 4th Order Runge-Kutta simulation

One could verify the previous geometric analysis with actual particle tracking to see if we indeed can have a stable closed orbit.

A particle tracking simulation was thus done by solving the coupled differential Lorentz equations in the \vec{B} only region and $(\vec{E} + \vec{B})$ -region for various momenta values at a time step of 1 nanosecond.

$$\frac{dx_{\circ}}{dt} = v_{x_{\circ}} \qquad \qquad \frac{dy_{\circ}}{dt} = v_{y_{\circ}}$$

$$\frac{dv_{x_{\circ}}}{dt} = \frac{q}{m}E\cos\theta + \frac{q}{m}v_{y_{\circ}}B_{z} \qquad \qquad \frac{dv_{y_{\circ}}}{dt} = \frac{q}{m}E\sin\theta - \frac{q}{m}v_{x_{\circ}}B_{z}$$

dv

🛠 Fermilab

where x_{\circ} and y_{\circ} are the coordinates in the horizontal plane of the ring with (0,0) being the centre of the ring.

Closed Orbit for 280 MeV/c muon

4th Order Runge-Kutta simulation

p = 280 MeV/c, E-field = 700 KV/m, B-field = 0.131 T

Ring Azimuthal Angle

Closed Orbit - 4th Order Runge-Kutta simulation

With a ± 50 mm aperture, the scale of a typical closed orbit would look like:

p = 300 MeV/c, E-field = 0.853 MV/m, B-field = 0.142 T

Ring Azimuthal Angle

‡ Fermilab

EDM Precession Estimates

Unlike the MDM, the precession due to EDM at a given point in the ring is going to keep constantly building up until the muon decays.

Since we have two distinct regions within a quarter section, the rate of precession will *slightly* vary within the \vec{B} -only section and the $(\vec{E} + \vec{B})$ -section, albeit by a small factor.

The total precession through a half-quadrant will be:

$$\Delta \phi_{EDM} = \frac{d}{S} \cdot B_0 \left[\ell_b + \ell_e \left(1 + \frac{E_0}{B_0 \beta c} \right) \right]$$

Plugging in appropriate set of field values for a momentum range of 300 MeV/c and the path lengths, we see that the EDM precesses in the order of 10 mrad for 5 muon lifetimes (~30 μs).

🚰 Fermilab

PIP-II Beam Potential for a 'd-0' EDM Experiment

Summary and Outlook

We could have a potential EDM experiment in the `g-2 storage ring by altering the quadrupole system to create a radial electric dipole field pointing radially inward.

The new system would not be significantly different from the current set-up, other than

- the radius of curvature for the orbits would be different,
- the inner/outer plates would be at a higher potential difference than the upper/lower plates in order to create the electric dipole field.

Since the muons' central momentum would be around 300 MeV/c, the requirements for the existing magnetic dipole field, inflector system, and kicker system would all reduce by a factor of ten.

Electric field levels of 0.77 MV/m could be tried to be achieved with potentials of ± 24 kV with lateral plate separations on the scale of ~ 70 mm.

An excellent opportunity to study the systematics for a possible future dedicated run, and could be the first demonstration of the frozen spin technique with the possibility to do some physics EDM measurement in a limited time (few weeks?).

This could prove as an able demonstrator for a dedicated future EDM physics experiment.

Muon path length from target to storage ring

For L ~ 420 meters and $p \approx 300 \text{ MeV/c}$, $\gamma \approx 3.01$ and the time of flight is approximately 1.48 μs , which is about 22% of a 300 MeV/c muon lifetime.

How to handle the decay products from AP0 if routed directly to the storage ring?

Time of flight from target

Muon time of flight from AP0

Beam Line Simulations

Generating a Gaussian distribution after the target station (with the Twiss parameters from g-2) transmits the same number of particles at 300 MeV/c and at 3100 MeV/c.

• 300 MeV/c: Currents had to be scaled down based on new momentum

Next step: Simulate a realistic distribution coming out from the target

- Not a complete model yet work is in progress
- Results are encouraging based on the number of particles at 300 MeV/c
- Key items to look at are: optical properties of low momentum distribution, effect of magnet material (Li lens and Be-windows), impact of AIR around the target station, beamline Ti windows

Quick Summary

Parameter	Value	Unit
Muon Momentum	387	MeV/c
Magnetic Field	0.178	Т
Radial Electric Field	-1.98	MV/m
Plate Separation	± 35	mm
Plate Voltage	± 69.283	kV
Quadrupole Gradient	TBD	MV/m/m
Central Orbit Radius	7112	mm
Radial Orbit Deviations	± 10.9	mm
Ring Admittance (Horiz., central momentum)	153	π mm-mrad

Next up...

- What is the natural first-order focusing due to set of curved 'dipole' plates?
- What quadrupole gradient would we need? What tunes to choose (especially vertical tune)?
- What would be the expansion coefficients of the E-field due to plate distortions and misalignments? What are its effect on EDM measurement?
- How bad can the radial and azimuthal magnetic field be?
- To what accuracy must the E-field be measured in the ring? And how to do it?
- Detector related and other systematics.

Motivation for EDM at Fermilab and in the `g-2' Ring

- A non-zero EDM value is an indication of combined CPV violation.
- EDM of a muon is heavily suppressed in the Standard Model unlike in few other BSM models an excellent probe for new physics.

- The current muon EDM limit of $d_{\mu} < 1.8 \times 10^{-19}$ is the the only EDM of fundamental particle probed directly on the bare particle, that too done using the same `g-2' storage ring!
- We have the combined wisdom of operating the `g-2' storage ring for over two decades.

PIP-II Layout

