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Thomas-BMT Equation

The total precession frequency 55 of the spin in the presence of B and E (both L p)
would be the net sum of MDM precession and the EDM precession, given by the
Thomas-BM'T equation:

EDM
MDM

It the magnetic field 1s purely vertical and the electric field 1s purely radial,
+ MDM spin precession would be about the vertical axis in the plane of the ring

+ EDM spin precession would be about the radius tipping vertically out of the
plane of the ring
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The g-2’ Storage Ring (at present)

* The current "g-2’ storage ring is being operated for measuring the magnetic dipole moment (MDM) of the muon
primarily caused by the vertical magnetic field B.

The precession frequency Q,,,,, 18 given by:

— — 1 5 X E)
Incoming Beam 1 m }/2 —1 C

c 'F Inflector
23 24
22
00
* The relativistic ¥ 1s chosen such that the second term 1s zero,
operating at muon’s ‘magic momentum’ of 3.09 GeV/c.

ESQ System
24 Calorimeters
Tracking Stations

e The ring has a radius of 7.112 meters and is four-fold symmetric.

e It has a highly purified constant vertical dipole magnetic field
throughout and four isometrically placed electrostatic quadrupoles
for vertical focussing.

Collimators
Inflector

e IBMS * Each 90 degree section consists of:

* 51 degrees of dipole B-field only region (~ 57%)

e 39 degrees of (dipole B + quadrupole f) region (~ 43%o)
e There are no dipole electric fields in the "g-2° storage ring at
c present.

(Figure: Anna Driutti)
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Proposed Scheme - A Hybrid Storage Ring

We propose an idea of freezing the MDM precession and enhancing the EDM signal by
introducing a dipole electric field in the electrostatic quadrupole sections.

The 1dea:

—bypm 1. The u* traverses through 51° B-only section.

2. The MDM component of the spin precession
increases by an amount ¢,,,,, due to the B-field.

3. The u* then enters the 39° section E + B section.
¢MDM

4. The dipole E field (along with B) in the 39°
section 1s chosen such that the MDM precesses the
spin in the opposite direction by the same amount

- ¢MDM
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Frozen Spin Precession in horizontal plane
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Which momentum to choose?

Operation points for '‘Muon d-0' (r=7.112 m)
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The electric field is a strong decider of the

muon central momentum.
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omentum Magnetic Field Field
itk ite) (Tesla) (MV/m)
100 0.046 0.048
£ 200 0.092 0.300
>
E 280 0.131 0.769
1 400 0.180 2.113
500 0.220 3.963

Frozen spin constraint:

— [ Geoo 1\l
F-B.| =% ( _ ) =0
|p| 39°

"2-2’ ring orbit constraint:
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Making use of PIP-Il Protons
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Assumed Particle Rates for PIP-II

RMS Current from PIP-II Linac

Pulse length for "g-2’ storage ring

No. of PIP-II bunches per EDM pulse

Protons per EDM pulse

Good pions/muons off the target

Muon storage duration

Muons stored per year
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0.002 A

120 ns

19.5

1.5x10°

18000

10 lifettimes = 83 microseconds

9 x 10!
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Direct EDM Measurement Sensitivity
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THANK YOU!

We would like to thank and also acknowledge the following for their continued
work and valuable suggestions on this venture:

Brendan Casey Hogan Nguyen
Joe Price Yannis Semertzidis
Sam Grant Dominika Vasilkova
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Questions

11

Q); How does the experiment make use of the ACE beam?
A: Usage of the proton pulses from the PIP-II linac. Higher the PIP-II beam intensity, higher

the muon production.

Q; Is the experiment uniquely enabled by The ACE upgrades?
A: The proton intensity given out by the PIP-II linac provides a near-perfect window for
creating muons in the interested range of momentum ideal for a frozen-spin EDM experiment.

Q; Can this experiment be performed elsewhere?
A: The "g-2’ storage ring offers a unique capability for a spin precession experiment. (In fact, the
best present y—EDM bound comes from BNL "g-2’ run.)

Q; What proton energies are needed?
A: 800 MeV protons.

Q); What proton quantities are needed?
A: Greater than 1.5 x 10° protons per EDM pulse.

Q; What time structure is needed? (bunch length, train structure)
A: Greater than 19.5 PIP-II bunches per EDM pulse.

Q); Can the experiment be performed with 800 MeV protons from PIP-II?
A: Absolutely!

2% Fermilab

Date Presenter | Presentation Title



Freezing the MDM Precession

The amount of spin’s MDM precession in the 51° of ?—only region 1s given by:

q 51° Trey
=—GB .
¢MDM,B " 900 4

The amount of spin’s MDM precession in the E + ﬁ—only region 1s given by:

q 1 p.E 39° Trev
-4 \6B- (G _ ) .
¢MDM, E+B m [ }/2 —1 C ] 90° 4

Equating them both, we can solve for the electric field value needed to cancel the MDM
precession accumulated in the B-only section.
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—

Finding the £ and B field values

Simplifying the equation for frozen MDM precession, we have a linear equation in E and B:

— — ° -1
F_g5. | Go Y (G _ ! ) —0 CONSTRAINT #1
|p| 39°

Since we look to re-use the "g-2’ storage ring, the radius of the ring imposes a condition via the centripetal
Lorentz force required to keep the muons on the 7.112 meter orbit:

— — mv2
E+vB =y—r CONSTRAINT #2

qr

(Since we could use both E and B-fields in the ring, there is no constraint to operate on the magic

momentum anymore.)

The above two constraints thus give us two linear equations in E and B which we can solve for various
values of momentum (y) for possible operational value of fields.
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Freezing the MDM Precession

Net MDM precession = 0
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If achieved in time, this could be the first ever demonstration of frozen spin technique technique!
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Possible field values for frozen MDM condition:

B, (T)
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E-field vs momentum

E-field for freezing MDM
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Plate separation vs E-field

Plate Separation [cm] vs E-field [MV/m]
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Beam Dynamics

The next question: with both electric and magnetic dipole fields, can we have a stable
closed orbit inside the ring with frozen MDM precession conditions?

The answer 1s: YES!

Only that the stable closed orbit will not be a perfect circle anymore.

1
. 1 y Trajectory through — — ring y . 1.
Trajectory through i ring 4 Trajectory through T ring

— region — region < E - region
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Beam Dynamics

The next question: with both electric and magnetic dipole fields, can we have a stable
closed orbit inside the ring with frozen MDM precession conditions?

The answer 1s: YES!

Only that the stable closed orbit will not be a perfect circle anymore.

: 1 y
Trajectory through %_ ring y Tezjectory through 4 g Trajectory through % - rin% . ~y ]

— region — region E — region
X x I X

............ Ry K. Ry

R, RO """""""" R, -~

How large are these deviations from the 7.112 meter orbit?
3& Fermilab
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Closed Orbit - Geometric Analysis

y
With some geometric analysis, we find

that,

ro = Ry[1 — cos(6,) + sin(6,)] + R, [cos(6),) — sin(6,)]

"o R, /'I e k. : :
8, ry = \/ERb sind, + R,(1 — \/5 sin @,)
.l" /.'
a .
“Hta For example, with the parameters of
—¥ X
4 o )
v p =387 MeV/c,
—)
E =198 MV/m,
Displacement from 7.112 m [mm] Displacement from 7.112 m [mm] —_
S e B =0.178 1,
£ : the maximum radial orbital variations
el | from the 7.112 meters circular orbit are
R T only £10.9 mm!
Azimuthal Angle [deg.] Azimuthal Angle [deg.]
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Closed Orbit - 4th Order Runge-Kutta simulation

One could verity the previous geometric analysis with actual particle tracking to see
if we indeed can have a stable closed orbit.

A particle tracking 51mulat10n was thus done by solvmg the coupled differential
Lorentz equations 1n the B only region and (E + B ) -region for various momenta
values at a time step of 1 nanosecond.

dx dy,
o — =y
ar e~
dv
dvx q q Y. q E . q
. = sind ——v_B
P mEcosé’+;\/yoBZ At - G P

where x, and y, are the coordinates in the horizontal plane of the ring with (0,0)
being the centre of the ring..
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Closed Orbit for 280 MeV/c muon
4th Order Runge-Kutta simulation

p = 280 MeV/c, E-field = 700 KV/m, B-field= 0.131 T
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Closed Orbit - 4th Order Runge-Kutta simulation

With a £50 mm aperture, the scale of a typical closed orbit would look like:

p = 300 MeV/c, E-field = 0.853 MV/m, B—field =0.142 T
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EDM Precession Estimates

Unlike the MDM, the precession due to EDM at a given point in the ring 1s going to
keep constantly building up until the muon decays.

Since we have two distinct regions within a quarter section, the rate of precession
will slightly vary within the B-only section and the (E + B)-section, albeit by a small
factor.

The total precession through a half-quadrant will be:

d E,

Plugging in appropriate set of field values for a momentum range of 300 MeV/c and
the path lengths, we see that the EDM precesses in the order of 10 mrad for 5 muon
lifetimes (~30 us).
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PIP-Il Beam Potential for a ‘d-0’ EDM Experiment

800 MeV/c
protons
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Summary and Outlook

We could have a potential EDM experiment in the "g-2 storage ring by altering the quadrupole system to create a
radial electric dipole field pointing radially inward.

The new system would not be significantly different from the current set-up, other than
* the radius of curvature for the orbits would be different,

* the inner/outer plates would be at a higher potential difference than the upper/lower plates in order
to create the electric dipole field.

Since the muons’ central momentum would be around 300 MeV/c, the requirements for the existing magnetic dipole
field, inflector system, and kicker system would all reduce by a factor of ten.

Electric field levels of 0.77 MV/m could be tried to be achieved with potentials of =24 kV with lateral plate
separations on the scale of ~70 mm.

An excellent opportunity to study the systematics for a possible future dedicated run, and could be the first
demonstration of the frozen spin technique with the possibility to do some physics EDM measurement in a limited
time (few weeks?).

This could prove as an able demonstrator for a dedicated future EDM physics experiment.
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Muon path length from target to storage ring
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For L ~ 420 meters and p =~ 300 MeV/c, y = 3.01 and the time of flight 1s approximately 1.48 ps, which is
about 22% of a 300 MeV/c muon lifetime.

How to handle the decay products from APO if routed directly to the storage ring?
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Time of flight from target

Muon time of flight from APO

-------- Momentum =270 MeV/c
ToF fraction = 0.25
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Beam Line Simulations

Generating a Gaussian distribution after the target station (with the Twiss
parameters from g-2) transmits the same number of particles at 300 MeV/c and at
3100 MeV/c.

300 MeV/c: Gurrents had to be scaled down based on new momentum
Next step: Simulate a realistic distribution coming out from the target

* Not a complete model yet — work 1is in progress

* Results are encouraging based on the number of particles at 300 MeV/c

* Key items to look at are: optical properties of low momentum distribution,

effect of magnet material (Li lens and Be-windows), impact of AIR around
the target station, beamline 11 - windows

2% Fermilab

29 Date Presenter | Presentation Title



Quick Summary

Parameter Value Unit

Muon Momentum 387 MeV/c
Magnetic Field 0178 T

Radial Electric Field -1.98 MV/m

Plate Separation + 35 mm

Plate Voltage + 69.283 kV
Quadrupole Gradient TBD MV/m/m
Central Orbit Radius 7112 mm

Radial Orbit Deviations + 10.9 mm

Ring Admittance (Horiz., central momentum) 153 7 mm-mrad
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Next up...

* What 1s the natural first-order focusing due to set of curved ‘dipole’ plates?

* What quadrupole gradient would we need? What tunes to choose (especially
vertical tune)?

* What would be the expansion coefficients of the E-field due to plate distortions
and misalignments? What are its effect on EDM measurement?

* How bad can the radial and azimuthal magnetic field be?
* To what accuracy must the E-field be measured in the ring? And how to do it?

* Detector related and other systematics.
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Motivation for EDM at Fermilab and in the g-2’ Ring

* A non-zero EDM value 1s an indication of combined CPV
violation.

* EDM of a muon 1s heavily suppressed in the Standard Model
unlike in few other BSM models - an excellent probe for new
physics.

» The current muon EDM limit of d, < 1.8 x 1077 is the the only

EDM of fundamental particle probed directly on the bare particle,
that too done using the same "g-2’ storage ring!

* We have the combined wisdom of operating the "g-2’ storage ring
for over two decades.
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PIP-ll Layout
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