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The framework to improve reconstruction algorithm
The effort:

• to continue/extend Thomas Campbell's low energy proton reconstruction work.

• Thomas finish his development in 2019 (4 years ago)

• to introduce some improvements in primary vertex finding and selection

• the reconstruction algorithm employs a ML technique.

The goal:

Machine learning opportunity:

• Look at tracks near the primary vertex  

• A 3D CNN with raw digits or TPC clusters as input and 3D reconstructed vertices

• Can extend this to estimate the number of short protons stubs at the primary.



By Tom Junk at DUNE CM in September 2022



Setting up the environment and Running ND-GAr software : 

• Built the FNAL Computing Environment 

• Have used the ND-GAr software for event generation (1000 event) 
and detector simulations and event reconstructions.

• Made an analysis flat tree and used to produce histograms that can 
be used as an input for the machine learning .



Momentum difference between MC (simulated 
position) and reco (reconstructed position)

Start position difference between MC (simulated 
position) and reco (reconstructed position)

The Histograms produced from the analysis flat tree : 



Vertex position difference between MC 
(simulated position) and reco (reconstructed 
position)

Vertex position difference between MC 
(simulated position) and reco (reconstructed 
position) as a function of the detector X position

The Histograms produced from the analysis flat tree : 



The Framework prepared by Thomas Campbell

Particle Identification Learning for Low Energy Argon Gas Events (PILLAGE). A 
combination of a Random Sample Consensus (RANSAC) based clustering 
algorithm for identifying short, linear tracks and a Neural Net for particle ID 
classification and observable regression on the RANSAC’s tracks. 

It consists of two main codes 
• Particle ID (PILLAGE): https://github.com/dr-thomas/PILLAGE 

• Tracking (RANSAC): https://github.com/dr-thomas/RANSAC 

• Both are designed to use ND-GAr output information as the inputs for ML-training

Note:
• It was developed in 2019, because of that it is not compatible with the latest ND-Gar 

software.



• Running the Framework prepared by Thomas Campbell:
• Since the code was developed back in 2019, the variables names were no 

longer compatible with the produced anatree so all the codes had to be 
modified so they process the correct and desired data.

• The codes then were run to produce the train data as a csv file

• The train data was then divided into test/train data by 1:9 ratio.

• The model was trained using the MLPRegressor class from the 
sklearn.neural_network module.

MLPRegressor is an artificial neural network model that uses 
backpropagation to adjust the weights between neurons in 
order to improve prediction accuracy



• After the neural network is trained using the fit method, the model's predictions on the testing set are computed using the predict 
method. The residuals (the difference between the predicted and actual target values) are then computed and saved.

• A warning message was received that the fitting method class did not converge during training to a minimum.
• This could be due to a variety of reasons, including insufficient training data, or the presence of noisy or complex data that is difficult to 

learn.

"mu" refers to the mean of the residual 
distribution, which is the average value of 
the residuals. It is calculated as the sum of 
all the residuals divided by the number of 
residuals.

"Sigma" refers to the standard deviation 
of the residual distribution

The outcome of the neural network training:
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all the residuals divided by the number of 
residuals.

"Sigma" refers to the standard deviation 
of the residual distribution
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Summary:
• Used the ND-GAr software to generate 1000 events and simulated detector behavior for each event

• Analyzed the data by creating a flat tree and producing histograms to use as input for machine 
learning

• Modified Thomas Campbell's framework developed in 2019 to process desired data

• Produced a train data CSV file by running the modified codes

• Split train data into test and train data with a ratio of 1:9

• Used the MLPRegressor class from the sklearn.neural_network module to train the model

• Used the predict method to compute the model's predictions on the testing set

• Saved the residuals (the difference between the predicted and actual target values)

• Received a warning message during training that the fitting method class did not converge to a 
minimum

• Possible reasons for the warning include insufficient training data or noisy or complex data that is 
difficult to learn.



Next Steps:

• I have a script that will create several arrays and histograms for the 
data after we collect better data. It iterates over each event in the 
loaded data, and for each event, it appends the predicted 
momentum and true momentum to two different arrays. It then 
calculates the residual between the predicted momentum and true 
momentum for each pair of momenta within an event and appends 
the residual and predicted momentum to two different arrays. It also 
calculates the kinetic energy associated with each momentum and 
creates histograms for the residual in kinetic energy, the predicted 
kinetic energy, and the true kinetic energy.

• Eventually, another script will produce the fractional occupancy of 
the detector. 



Question

• Are there any additional pre-processing or feature selection to reduce 
noise and complexity in the data ?

• Are there an official large statistic MC that we can use instead of 
private production?


