
ML-based Event Reconstruction
Development for the DUNE ND-GAr

Mahmoud Ibrahim

Eötvös Loránd University

Faculty of sciences

The framework to improve reconstruction algorithm
The effort:

• to continue/extend Thomas Campbell's low energy proton reconstruction work.

• Thomas finish his development in 2019 (4 years ago)

• to introduce some improvements in primary vertex finding and selection

• the reconstruction algorithm employs a ML technique.

The goal:

Machine learning opportunity:

• Look at tracks near the primary vertex

• A 3D CNN with raw digits or TPC clusters as input and 3D reconstructed vertices

• Can extend this to estimate the number of short protons stubs at the primary.

By Tom Junk at DUNE CM in September 2022

Setting up the environment and Running ND-GAr software :

• Built the FNAL Computing Environment

• Have used the ND-GAr software for event generation (1000 event)
and detector simulations and event reconstructions.

• Made an analysis flat tree and used to produce histograms that can
be used as an input for the machine learning .

Momentum difference between MC (simulated
position) and reco (reconstructed position)

Start position difference between MC (simulated
position) and reco (reconstructed position)

The Histograms produced from the analysis flat tree :

Vertex position difference between MC
(simulated position) and reco (reconstructed
position)

Vertex position difference between MC
(simulated position) and reco (reconstructed
position) as a function of the detector X position

The Histograms produced from the analysis flat tree :

The Framework prepared by Thomas Campbell

Particle Identification Learning for Low Energy Argon Gas Events (PILLAGE). A
combination of a Random Sample Consensus (RANSAC) based clustering
algorithm for identifying short, linear tracks and a Neural Net for particle ID
classification and observable regression on the RANSAC’s tracks.

It consists of two main codes
• Particle ID (PILLAGE): https://github.com/dr-thomas/PILLAGE

• Tracking (RANSAC): https://github.com/dr-thomas/RANSAC

• Both are designed to use ND-GAr output information as the inputs for ML-training

Note:
• It was developed in 2019, because of that it is not compatible with the latest ND-Gar

software.

• Running the Framework prepared by Thomas Campbell:
• Since the code was developed back in 2019, the variables names were no

longer compatible with the produced anatree so all the codes had to be
modified so they process the correct and desired data.

• The codes then were run to produce the train data as a csv file

• The train data was then divided into test/train data by 1:9 ratio.

• The model was trained using the MLPRegressor class from the
sklearn.neural_network module.

MLPRegressor is an artificial neural network model that uses
backpropagation to adjust the weights between neurons in
order to improve prediction accuracy

• After the neural network is trained using the fit method, the model's predictions on the testing set are computed using the predict
method. The residuals (the difference between the predicted and actual target values) are then computed and saved.

• A warning message was received that the fitting method class did not converge during training to a minimum.
• This could be due to a variety of reasons, including insufficient training data, or the presence of noisy or complex data that is difficult to

learn.

"mu" refers to the mean of the residual
distribution, which is the average value of
the residuals. It is calculated as the sum of
all the residuals divided by the number of
residuals.

"Sigma" refers to the standard deviation
of the residual distribution

The outcome of the neural network training:

"mu" refers to the mean of the residual
distribution, which is the average value of
the residuals. It is calculated as the sum of
all the residuals divided by the number of
residuals.

"Sigma" refers to the standard deviation
of the residual distribution

The outcome of the neural network training:

Summary:
• Used the ND-GAr software to generate 1000 events and simulated detector behavior for each event

• Analyzed the data by creating a flat tree and producing histograms to use as input for machine
learning

• Modified Thomas Campbell's framework developed in 2019 to process desired data

• Produced a train data CSV file by running the modified codes

• Split train data into test and train data with a ratio of 1:9

• Used the MLPRegressor class from the sklearn.neural_network module to train the model

• Used the predict method to compute the model's predictions on the testing set

• Saved the residuals (the difference between the predicted and actual target values)

• Received a warning message during training that the fitting method class did not converge to a
minimum

• Possible reasons for the warning include insufficient training data or noisy or complex data that is
difficult to learn.

Next Steps:

• I have a script that will create several arrays and histograms for the
data after we collect better data. It iterates over each event in the
loaded data, and for each event, it appends the predicted
momentum and true momentum to two different arrays. It then
calculates the residual between the predicted momentum and true
momentum for each pair of momenta within an event and appends
the residual and predicted momentum to two different arrays. It also
calculates the kinetic energy associated with each momentum and
creates histograms for the residual in kinetic energy, the predicted
kinetic energy, and the true kinetic energy.

• Eventually, another script will produce the fractional occupancy of
the detector.

Question

• Are there any additional pre-processing or feature selection to reduce
noise and complexity in the data ?

• Are there an official large statistic MC that we can use instead of
private production?

