WLS attenuation length. & Inconsistencies between DF T characteristics measurements

CM. Cattadori for the working group UniMiB & INFN Milano Bicocca 02/05/2023

WLS for LAr detectors

- Requirements:
 - Cryoresilience
 - PMMA based (no scintillator, only Cerenkov emission)
 - High tolerances O(0.1 mm) on the as-cut tiles
 - Guiding surfaces: Optical grade
 - Edges: polished
 - Absorbption: 330-390 nm (tailored for pTP emission)
 - Emission: 420-500 nm to match the SiPM Q.E.
 - Optical Path O(1 m)

Absorption and Emission can be tailored on different wavelengths

WLS: Production of 90 FD1 and 20 FD2

90 x WLS slabs for pDUNE
FD1-PDS: 480 x 93 mm² x 4mm thick

Laser cut (external industrial partner) and edge polishing procedures to cut out the casted plates in tiles defined and validated.

 20 x WLS slabs for the pDUNE FD2-PDS: 607 x 607 mm² x 4mm thick casted in one week

Large Area WLS

One 607 x 607 x 4 mm³ slab is being assembled in one DUNE FD2 XA cell, together with SiPMs populated on flex circuits substrate.

- In LAr the critical angle for Total Internal Reflection at the surfaces is $\theta_c = 56^\circ$.
- For $\theta > \theta_c$ photons are trapped and guided to SiPMs.
- For $\theta < \theta_c$ photons leave the lightguide and imping onto the DF
- Due to multiple reflections the optical path inside large size WLS (as for FD2 of DUNE) may reach a couple of meters.

The WLS attenuation length l_{att} is the leading parameter to maximize the photon transmission at the edges of a large area WLS-lightguide.

New measurements of G2P WLS lightgui

- T measurements at the spectrophotometer on 4 mm thick plates may suffer of systematics to infer att.length O(1 m)
- One 1 cm thick WLS plate has been casted
- T measurements have been performed with lasers at three λ 400< λ <450 nm. After subtraction of reflections effects at the entrance, these are used as reference.
- The T(λ) measured at the spectrophotometer are corrected (shifted)
- The Att.length (*l*_{att}) is derived (the method and the results will be published)

WLS for FD1: Attenuation length (1

The I_{att} of the DUNE - FD1:

- is 37 cm at 430 nm (maximum of WLS PL spectrum)
- The dye concentration has been tailored on the FD1 WLS shape.
- an optical simulation is employed to evaluate the impact of different variables on the light collection efficiency:
 - chromophore concentration
 - lightguide shape and size

WLS for FD2: Attenuation length (l_{att})

The *dye concentration* of the DUNE - FD2:

- must be tailored for the FD2 WLS size \rightarrow optical path.
- Optimization (driven by sims)
- Given the WLS plate thickness (4 mm) the cromophore concentration must be tuned by the trade off of maximizing both the latt and the pTP ph. trapping efficiency

8

Dichroic Filters

- Dichroics Filter (DF) are made of thin film multilayer coatings on a glass/fused silica substrate. They act as Fabry-Perot interferometer to slectively transmit/reflect light.
- For Large volume LAr detectors => Large area DF
- The glass window is coated with a primary WLS (pTP) to downshift the 128 nm light to ~350 nm

ZAOT (our industrial partner) substrate

• Borofloat 33 Optical Glass OPTO (BL component) Substrate

• B270

ZAOT - T curves

Cutoff change vs n => $\lambda = \lambda_0 \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta}$

ZAOT: T measurements at UniCamp

Feb 2022

ZAOT vs OPTO: T measurements @ Mi

MILANO bicocca 12

OPTO and ZAOT in Water

ZAOT vs OPTO: T meas. at ZAOT compare AIDA

- Filters have been optimized to operate in IAr (@45°)
 - Higher transmittance in the pTP emission range
 - Higher reflectivity in the light gude WLS chromofore emission range
 - But narrower refectivity window

Dichroic filters production

- ZAOT produced large area (150 x 150 mm²):
 - 265 DF for the Module-0 of the DUNE-FD2 for 10 XA Megacells (4 membrane + 6 cathode)
 - 54 DF for PDE Production capabilities of both vendors: > 120 DF in 5 w.d.

• Measurements of the PDE in LAr of one FD1-XA equipped with

- three OPTO (0 < position< 24 cm)
- three ZAOT (24 < position< 48 cm)
- Effect foreseen by GEANT based Simulations

02/05/2023

C.M.Cattadori

Assessment of ZAOT DFs performances in LAr 🏻 🎇 🗛

Large area XA configuartions

	WLS dimples	DF size (mm ²)	DF	SiPM	PoF	SoF	shared elec. box
M1		100x200	ZAOT	HPK			x
M2		100x200	ZAOT	HPK		S	x
M3	X	100x200	ZAOT	HPK			X
M4	X	100x200	ZAOT	HPK			x
M5	x	150x150	PE	FBK		X	
M6	x	150x150	PE	HPK			
M7	x	150x150	PE	HPK	S 94		
M8	x	150x150	PE	FBK			8 19
C1		100x200	ZAOT	HPK	X	X	
C2		100x200	ZAOT	HPK	X	X	
C3	2	150x150	PE	FBK	X	X	2
C4	x	150x150	PE	HPK	X	X	
C5	x	150x150	ZAOT	HPK	x	x	
C6	x	150x150	ZAOT	HPK	X	Х	
C7	х	150x150	ZAOT	FBK	X	X	
C8	x	150x150	ZAOT	HPK	X	X	

- PDE measurements of the large area XArapuca will be performed at different sites:
 - INFN Naples
 - CIEMAT (Madrid)

Thank you!

DF coating uniformity

- two extreme positions (a and c) of the ML coating disk tested
- each of the two DF tested at 6 different points

pTP coating

The coating report from UniCAMP

Date	Size	Disc position	Mass before	Mass after
26/01/23	143.75x143.75	Central (01)	66,62698 g	66,72385 g
26/01/23	143.75x143.75	External (07)	66,17028 g	66,22962 g
N. filters = 12		pTP = 4,000 g		Pc=2,2*10-5 mbar

Main pTP coating site: UNICAMP Coating capabilities: 2 batches/day => 24/day

- Evaporation of ~400 ug/cm2
- Thickness: 3.2 um

Twin facility will participate at the FD2 pTP coating efforts at INFN Napoli starting from spring 2024

