Anomalous $\mathbf{b} \rightarrow \mathbf{c} \tau \nu$ data: form factors, leptoquarks, and charged Higgs bosons

Ulrich Nierste
Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT)

Flavour anomalies

In recent years several discrepancies between measurements (of branching ratios and/or angular decay distributions) and SM predictions have emerged, denoted as flavour anomalies.

This talk:

$$
R_{D} \equiv \frac{B(B \rightarrow D \tau \bar{\nu})}{B(B \rightarrow D \ell \bar{\nu})} \quad \text { and } \quad R_{D^{*}} \equiv \frac{B\left(B \rightarrow D^{*} \tau \bar{\nu}\right)}{B\left(B \rightarrow D^{*} \ell \bar{\nu}\right)} \quad \text { with } \quad \ell=e, \mu .
$$

R_{D} and $R_{D^{*}}$ in 2021

central values of R_{D} and $R_{D^{*}}$ above SM predictions in all measurements
some tension in R_{D} between BaBar12 and Belle19.
average 3.3σ off from SM

New LHCb measurement in 2022

good overall agreement between experiments Note: $\Delta \chi^{2}=1$ ellipses correspond to $\mathrm{p}=39 \%$ (while the horizontal strips correspond to $p=68 \%$)
R_{D} larger, $R_{D^{*}}$ smaller
average 3.2σ off from SM prediction

- The 95% CL regions of all measurements overlap.
- Robust anomaly:
- three experiments, different methods (semileptonic vs. hadronic tag)
- SM prediction not contested

Plan of this talk:

Part I:
New physics in $b \rightarrow c \tau \nu$

Part II:

Form factors and new physics in $b \rightarrow c \ell \nu$ with $\ell=e, \mu$

New physics explanation

Charged Higgs boson:
was known to be sensitive to effects of a hypothetical charged Higgs boson since 1992.

Grzadkowski,Hou, Phys. Lett. B 283 (1992) 427
Leptoquarks:
bosons with quark-lepton coupling
can also explain $(g-2)_{\mu}$ and $b \rightarrow s \mu^{+} \mu^{-}$anomalies

Spin $0, \mathrm{SU}(2)$ doublet

appear in $\mathrm{SU}(4)$ gauge theories, where lepton number is the fourth colour

Effective operators

Nice: We can describe all types of new physics in terms of effective four-quark operators:

$$
\begin{aligned}
O_{V}^{L} & =\bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}, \\
O_{S}^{R} & =\bar{c}_{L} b_{R} \bar{\tau}_{R} \nu_{\tau L}, \\
O_{S}^{L} & =\bar{c}_{R} b_{L} \bar{\tau}_{R} \nu_{\tau L}, \\
O_{T} & =\bar{c}_{R} \sigma^{\mu \nu} b_{L} \bar{\tau}_{R} \sigma_{\mu \nu} \nu_{\tau L} .
\end{aligned}
$$

Fit the corresponding coefficients $C_{V}^{L}, C_{S}^{R, L}, C_{T}$ to data.
Blanke,Crivellin,de Boer,UN,Nisandzic,Kitahara,Phys.Rev.D 100(2019) 3, 035035
Iguro, Kitahara,Watanabe, arXiv:2210:10751

Other input to global fit:
fraction of longitudinally polarised D^{*} in $B \rightarrow D^{*} \tau \bar{\nu}$:

$$
\begin{aligned}
& F_{L}^{D^{*}}=0.60 \pm 0.08_{\text {stat }} \pm 0.04_{\text {sys }} \\
& F_{L}^{D^{*}}=0.464 \pm 0.003
\end{aligned}
$$

$$
\text { Belle } 2019
$$

SM prediction

This 1.4σ discrepancy has some effect on the global fit to the NP coefficients.

New-physics explanations

$\operatorname{real} C_{V}^{L}, C_{S}^{L}=-4 C_{T}$
$\operatorname{real} C_{S}^{R}, C_{S}^{L}$
$\operatorname{real} C_{V}^{L}, C_{S}^{R}$
$\operatorname{Re}\left[C_{S}^{L}=4 C_{T}\right], \operatorname{Im}\left[C_{S}^{L}=4 C_{T}\right]$
motivated by

S S_{1} : smaller (SM-like) $F_{L}\left(D^{*}\right)$.

S $\mathrm{S}_{2 \text { : similar to } \mathrm{H}^{+} \text {, but small } F_{L}\left(D^{*}\right) \text {, }, \text {, }}$ testable at ATLAS and CMS.

Charged-Higgs revival

Before 2019: $R\left(D^{*}\right)$ called for sizable $\bar{c} \gamma_{5} b \bar{\tau}_{R} \nu_{\tau L}$ coupling, i.e. sizable $C_{R}-C_{L}$. But this was in tension with the bound $B\left(B_{c}^{+} \rightarrow \tau^{+} \nu\right) \leq 0.3$.
R. Alonso, B. Grinstein, J. Martin Camalich, Rev. Lett. 118, 081802 (2017)

"lose"

- In our 2018/2019 papers we found the fit to compromise between this tension and $F_{L}\left(D^{*}\right)>F_{L}\left(D^{*}\right)_{\text {SM }}$, which the H^{+}scenario can explain, while the leptoquark scenarios cannot. Blanke et al.,Phys.Rev.D 100(2019) 3, 035035 "tie"
The 2022 data shift the anomaly a bit from $R\left(D^{*}\right)$ to $R(D)$, so that the $B_{c}^{+} \rightarrow \tau^{+} \nu$ is less relevant.
"win"

Charged-Higgs revival

Charged Higgs exchange feeds the coefficients $C_{S}^{L, R}$ of
$O_{S}^{L}=\bar{c}_{R} b_{L} \bar{\tau}_{R} \nu_{\tau L}$ and $O_{S}^{R}=\bar{c}_{L} b_{R} \bar{\tau}_{R} \nu_{\tau L}$.
big
$R(D)=R_{\mathrm{SM}}(D)\left[1+1.54 \operatorname{Re}\left(C_{S}^{L}+C_{S}^{R}\right)\right]$
$R\left(D^{*}\right)=R_{\mathrm{SM}}\left(D^{*}\right)\left[1+0.13 \operatorname{Re}\left(C_{S}^{R}-C_{S}^{L}\right)\right]$
small

2022 LHCb result with larger $R(D)$ and smaller $R\left(D^{*}\right)$ corroborates the chargedHiggs interpretation

Charged-Higgs solution

- Girish Kumar, Phys.Rev.D 107 (2023) 7, 075016:

Choose ad-hoc Yukawa sector

$$
L_{H^{+}}=\rho_{t c}\left(V_{t b} \bar{c}_{R} b_{L}+V_{t s} \bar{c}_{R} S_{L}\right) H^{+}+\text {h.c. }
$$

and flavour-diagonal couplings to leptons to simultaneously explain $b \rightarrow c \tau \nu$ and $b \rightarrow s \ell \bar{\ell}$ anomalies and modify the W mass prediction.

Critical test:
Search for $c g \rightarrow t \tau^{+} \tau^{-}$at LHC.
Syuhei Iguro, Phys.Rev.D 107 (2023) 9, 095004.

τ polarisation asymmetry

Karlsruher Institut für Technologie
Future:

$$
P_{\tau}\left(D^{*}\right)=\frac{\Gamma\left(B \rightarrow D^{*} \tau^{\lambda=+1 / 2} \nu\right)-\Gamma\left(B \rightarrow D^{*} \tau^{\lambda=-1 / 2} \nu\right)}{\Gamma\left(B \rightarrow D^{*} \tau \nu\right)}
$$

Belle 2017:

$$
P_{\tau}\left(D^{*}\right)=-0.38 \pm 0.51_{-0.16}^{+0.21}
$$

Standard Model: $P_{\tau}\left(D^{*}\right)=-0.50 \pm 0.01$
Different NP explanations have different imprints on $P_{\tau}\left(D^{*}\right)$.

Sum rule for $b \rightarrow c \tau \bar{\nu}$

$R\left(D^{*}\right)$ and $R(D)$ are correlated with

$$
\begin{aligned}
R\left(\Lambda_{c}\right) & =\frac{B\left(\Lambda_{b} \rightarrow \Lambda_{c} \tau \bar{\nu}\right)}{B\left(\Lambda_{b} \rightarrow \Lambda_{c} l \bar{\nu}\right.}, \quad \text { where } \quad \Lambda_{b} \sim b u d, \quad \Lambda_{c} \sim c u d \\
\frac{\mathcal{R}\left(\Lambda_{c}\right)}{\mathcal{R}_{\mathrm{SM}}\left(\Lambda_{c}\right)} & =0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\mathrm{SM}}(D)}+0.738 \frac{\mathcal{R}\left(D^{*}\right)}{\mathcal{R}_{\mathrm{SM}}\left(D^{*}\right)}+x .
\end{aligned}
$$

with $|x|<0.05$ in any scenario of new physics.
Blanke,Crivellin,de Boer,UN,Nisandzic,Kitahara,Phys.Rev.D 100(2019) 3, 035035

What is behind the sum rule?

kII
Karlsruher Institut für Technologie

- In the heavy-quark limit $m_{b} \rightarrow \infty$:

$$
B\left(B \rightarrow D^{*} \ell \nu\right)=3 B(B \rightarrow D \ell \nu)
$$

and

$$
B\left(\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu\right)=B\left(B \rightarrow D^{*} \ell \nu\right)+B(B \rightarrow D \ell \nu)=1
$$

Thus $R\left(\Lambda_{c}\right)=\frac{1}{4}(3-\epsilon) R\left(D^{*}\right)+\frac{1}{4}(1+\epsilon) R(D)$ holds for all choices of
ϵ. \Rightarrow Optimise coefficients in

$$
\frac{\mathcal{R}\left(\Lambda_{c}\right)}{\mathcal{R}_{\mathrm{SM}}\left(\Lambda_{c}\right)}=0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\mathrm{SM}}(D)}+0.738 \frac{\mathcal{R}\left(D^{*}\right)}{\mathcal{R}_{\mathrm{SM}}\left(D^{*}\right)}+x .
$$

to minimise x for all values of coefficients $C_{V}^{L}, C_{S}^{R, L}, C_{T}$ complying with data.

Sum rule for $b \rightarrow c \tau \bar{\nu}$

$$
\frac{\mathcal{R}\left(\Lambda_{c}\right)}{\mathcal{R}_{\mathrm{SM}}\left(\Lambda_{c}\right)}=0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\mathrm{SM}}(D)}+0.738 \frac{\mathcal{R}\left(D^{*}\right)}{\mathcal{R}_{\mathrm{SM}}\left(D^{*}\right)}+x .
$$

Our 2019 prediction (confirmed in 2022 with new data on $R\left(D^{(*)}\right)$):

$$
R\left(\Lambda_{c}\right)=R_{\mathrm{SM}}\left(\Lambda_{c}\right)(1.15 \pm 0.04)=0.38 \pm 0.01 \pm 0.01
$$

Tension with 2022 measurement by LHCb:

$$
R\left(\Lambda_{c}\right)=0.242 \pm 0.026 \pm 0.040 \pm 0.059
$$

LHCb, Phys.Rev.Lett. 128 (2022) 19, 191803
with future data either $R\left(D^{(*)}\right)$ will come down or $R\left(\Lambda_{c}\right)$ will go up.

Sum rule for $b \rightarrow c \tau \bar{\nu}$

Consider scenarios with only one particle contributing to $b \rightarrow c \tau \bar{\nu}$:

	scenario	$\mathcal{R}(D)$	$\mathcal{R}\left(D^{*}\right)$	$\mathcal{R}\left(\Lambda_{c}\right)$
	exp.	$0.36(3)$	$0.29(1)$	$0.24(7)$
SU(2) singlet leptoquark	\boldsymbol{S}_{1}	$0.36(3)$	$0.29(1)$	$0.38(3)$
SU(2) doublet leptoquark	$\boldsymbol{S}_{\mathbf{2}}$	$0.36(3)$	$0.28(1)$	$0.40(4)$
SU(2) triplet leptoquark	\boldsymbol{S}_{3}	$0.33(2)$	$0.29(1)$	$0.38(2)$
charged Higgs boson	$\boldsymbol{H}^{ \pm}$	$0.36(3)$	$0.28(1)$	$0.36(2)$

Fedele,Blanke,Crivellin,Iguro, Kitahara,UN,Watanabe, Phys. Rev. D107 (2023) 5, 055005
fit results

Part II: Form factors and new physics in $b \rightarrow c \ell \nu$ with $\ell=e, \mu$

Form factors

What I told you in Part I:

- Robust anomaly:
- three experiments, different methods (semileptonic vs. hadronic tag)
SM prediction not contested

$B \rightarrow D^{*}$ form factors

For the Standard-Model prediction need

$$
\left\langle D^{*}(p, \epsilon)\right| \bar{c}_{L} \gamma^{\mu} b_{L}\left|\bar{B}\left(p_{B}\right)\right\rangle,
$$

which is expressed in terms of $\left(p+p_{B}\right)^{\mu}, q^{\mu} \equiv p_{B}^{\mu}-p^{\mu}, \epsilon^{\mu}$, and $\epsilon_{\nu \rho \sigma}^{\mu} \epsilon^{\nu} p^{\rho} q^{\sigma}$.
The coefficients involve four form factors, calculated with lattice QCD near $q^{2}=q_{\max }^{2}$ and with QCD sum rules near $q^{2}=0$.
z expansion:
express form factors in powers of $z \equiv \frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{-}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{-}}}$
with $t \equiv q^{2}, t_{ \pm} \equiv\left(m_{B} \pm m_{D}\right)^{2}$.

$B \rightarrow D^{*}$ form factors

Compare
BGL (Boyd, Grinstein, Lebed 1995):
global fit by Gambino, Jung, Schacht in 2019 to all available calculations and data in $B \rightarrow D^{*} \ell \nu$ with light leptons $\ell=e, \mu$. Phys. Lett. B 795 (2019) 386
HQET (using expansions in $\Lambda_{\mathrm{QCD}} / m_{c, b}$):
global fit by Iguro, Kitahara and Watanabe in 2022 to all available calculations and data (including q^{2} shapes) in $B \rightarrow D^{*} \ell \nu$ with light leptons $l=e, \mu$.
Fermilab/MILC (2021):
first lattice calculation employing $q^{2} \neq q_{\max }^{2}$.

```
Eur. Phys. J. C }82\mathrm{ (2022) 1141, Eur.Phys.J.C 83, }21\mathrm{ (2023).
```


$B \rightarrow D^{*}$ form factors

DM (Dispersive Matrix approach, Rome lattice group): uses Fermilab/MILC data and Rome calculation of susceptibility χ, employs analyticity and unitarity constraints to derive two-sided bounds on form factors.

G. Martinelli, S. Simula, and L. Vittorio, Phys. Rev. D 104 (2021) 094512,
Eur. Phys. J. C 82 (2022) 1083, JHEP 08 (2022) 022. G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio, Phys. Rev. D 106 (2022) 093002.

With DM method find $R\left(D^{*}\right)$ compatible with Standard Model prediction and furthermore $\left|V_{c b}\right|$ from $B \rightarrow D^{*} \ell \nu$ consistent with $\left|V_{c b}\right|$ from inclusive $B \rightarrow X_{c} \ell \nu$ decays.

$B \rightarrow D^{*}$ form factors vs new physics

Next slides: confront all four form factor predictions with new data on the fraction $F_{L}^{D^{*}, \text { light }}$ of longitudinally polarized D^{*} in $B \rightarrow D^{*} \ell \nu$ and the forward-backward asymmetries A_{FB}^{e} and A_{FB}^{μ} Belle, 2301.07529; Belle II, talk by Chaoyi Lyu at ALPS, March 2023

Discriminating $B \rightarrow D^{*} \ell \nu$ form factors via polarization observables and asymmetries

> Fedele,Blanke,Crivellin,Iguro,UN,Simula,Vittorio, arXiv:2305.15457.

$B \rightarrow D^{*}$ form factors vs new physics

0.240 .250 .260 .270 .280 .290 .30 $\mathcal{R}\left(D^{*}\right)$
\} compatible with Standard Model as with other methods,

Predictions for $F_{L}^{D^{*}, \text { light }}$ and $A_{\mathrm{FB}}^{e, \mu}$
Karlsruher Institut für Technologie

SM predictions with $\left\{\begin{array}{l}\text { HQET or BGL } \\ \text { F/M or DM }\end{array}\right\}$ describe $\left\{\begin{array}{l}B \rightarrow D^{*} \ell \nu \\ R\left(D^{*}\right)\end{array}\right\}$ data.

Form factors or new physics?

Next logical steps:
perform a global fit to form factors including $F_{L}^{D^{*}, \text { light }}$ and $A_{\mathrm{FB}}^{e, \mu}$, using the predicted form factors as priors,
investigate whether there could be new physics in the $B \rightarrow D^{*} \ell \nu$ decays with light leptons $l=e, \mu$.

Global fit

Green: prior
Blue: posterior
Black: F/M error bars

$$
w \equiv \frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}
$$

DM form factors

DM fit result:
compomise between $F_{L}^{D^{*}, \text { light }}$ and $R\left(D^{*}\right)$, thus tension with measured $R\left(D^{*}\right)$ as with other form factor predictons,
post-fit $\left|V_{c b}\right|=0.0412 \pm 0.0012$ from $B \rightarrow D^{*} \ell \nu$ branching fraction in good agreement with $\left|V_{c b}\right|_{\text {incl }}$, pre-fit $\left|V_{c b}\right|=0.0431 \pm 0.0012$ is larger. (State-of-the-art determinations of $\left|V_{c b}\right|$ use more input beyond the branching fraction.)

DM form factors: new physics

New physics with scalar, tensor, or right-handed vector currents has no relevant impact on the $B \rightarrow D^{*} \ell \nu$ observables.
New physics decreasing the SM left-handed vector current coupling by 5% describes the data best, with $R\left(D^{*}\right)$ in perfect agreement with experiment. Only the DM form factors permit a solution to the $R\left(D^{*}\right)$ puzzle with new physics in the couplings to light leptons, while BGL, HQET, and F/M cannot.
But: new physics in left-handed vector current has zero effect on $F_{L}^{D^{*} \text {,light }}$, so the tension with DM stays.
> $\longrightarrow F_{L}^{D^{*}, \text { light }}$ is insensitive to any kind of new physics and is an excellent tool to check form factor calculations!

Summary

BaBar, Belle, and LHCb data consistently point to values of R_{D} and $R_{D^{*}}$ above their SM predictions, with a combined significance of 3.2σ.

- The new LHCb measurement of $R_{\Lambda_{c}}$ points to $\sim 2 \sigma$ inconsistent measurements of at least one of $R_{D}, R_{D^{*}}$, or $R_{\Lambda_{c}}$, irrespective of the presence of BSM physics, because these quantities fulfill a sum rule.
\longrightarrow Redundancy of B physics helps to disentangle BSM physics from mistakes.
Global fits of $R_{D}, R_{D^{*}}$, and $F_{L}^{D^{*}}$ give good results for the charged-Higgs and leptoquark interpretations, both with discovery prospects at CMS and ATLAS.
The 1.4σ excess in $F_{L}^{D^{*}}$ is best described by charged-Higgs hypothesis.
Dew measurements of $F_{L}^{D^{*} \text {,light }}$ disfavor form factor calculations using the dispersivematrix approach with Fermilab/MILC data.
- $F_{L}^{D^{*}, \text { light }}$ is insensitive to new physics and checks form factors.

Backup

Backup: form factor definitions

Karlsruher Institut für Technologie

$$
\begin{align*}
& \left\langle D^{*}(p, \epsilon)\right| \bar{c} \gamma^{\mu} P_{L} b\left|\bar{B}\left(p_{B}\right)\right\rangle= \tag{8}\\
& -\frac{V\left(q^{2}\right)}{m_{B}+m_{D^{*}}} \varepsilon_{\alpha \beta \gamma}^{\mu} \epsilon^{* \alpha} p^{\beta} q^{\gamma}+i A_{0}\left(q^{2}\right) \frac{m_{D^{*}}}{q^{2}}\left(\epsilon^{*} \cdot q\right) q^{\mu} \\
& -\frac{i A_{1}\left(q^{2}\right)}{2\left(m_{B}-m_{D^{*}}\right)}\left[\left(m_{B}^{2}-m_{D^{*}}^{2}\right) \epsilon^{* \mu}-\left(\epsilon^{*} \cdot q\right)\left(p+p_{B}\right)^{\mu}\right] \\
& -i A_{3}\left(q^{2}\right) \frac{m_{D^{*}}}{q^{2}}\left(\epsilon^{*} \cdot q\right)\left[\frac{q^{2}}{m_{B}^{2}-m_{D^{*}}^{2}}\left(p+p_{B}\right)^{\mu}-q^{\mu}\right],
\end{align*}
$$

with
$2 m_{D^{*}} A_{3}\left(q^{2}\right)=\left(m_{B}+m_{D^{*}}\right) A_{1}\left(q^{2}\right)-\left(m_{B}-m_{D^{*}}\right) A_{2}\left(q^{2}\right)$,

$$
\begin{aligned}
V\left(q^{2}\right) & =\frac{m_{B}+m_{D^{*}}}{2} g(w) \\
A_{1}\left(q^{2}\right) & =\frac{f(w)}{m_{B}+m_{D^{*}}} \\
A_{2}\left(q^{2}\right) & =\frac{1}{2} \frac{m_{B}+m_{D^{*}}}{\left(w^{2}-1\right) m_{B} m_{D^{*}}}\left[\left(w-\frac{m_{D^{*}}}{m_{B}}\right) f(w)-\frac{\mathcal{F}_{1}(w)}{m_{B}}\right] \\
A_{0}\left(q^{2}\right) & =\frac{1}{2} \frac{m_{B}+m_{D^{*}}}{\sqrt{m_{B} m_{D^{*}}}} P_{1}(w)
\end{aligned}
$$

$$
\text { Recall: } w \equiv \frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}
$$

Backup: $F_{L}^{D^{*}, \text { light }}$ and $A_{\mathrm{FB}}^{e, \mu}$

P

FIG. 2. Predicted 1σ range for F_{L}^{ℓ} (left panel) and A_{FB}^{ℓ} (right panel) as a function of q^{2} for the four different FF sets.

