

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

EIC RCS Dipole Magnet

Vladimir Kashikhin FNAL-JLAB Meeting May 5, 2023

RCS Dipole 2D Simulation

Coil ampere-turns 4100 A. Center field 0.25523 T. Iron peak field Bmax=1.03 T. Pole profile optimized to obtain the best field homogeneity in the magnet gap by variations:

 Pole width, pole shim height, and radiuses R1, R2.
Besides the pole contour is smooth and has uninterrupted dy/dx derivative to eliminate high order harmonics.

RCS Dipole 2D Field Homogeneity

Field homogeneity area +/- 0.1%.

Field homogeneity area +/- 0.02%.

RCS Dipole 3D Field

Iron core flux density. Bmax=1.4 T (in corners).

Integrated field harmonics in units (10⁻⁴). Integrated field 0.491 T-m.

4 FNAL-JLAB Meeting, RCS Dipoles

RCS Dipole Specification

Parameter	Unit	Value
Number of magnets		768
Magnetic length	m	1.923
Gap	mm	40
Gap minimum field	Т	0.013
Gap maximum field	Т	0.256
Field quality at Rref=15 mm	%	0.1
Current ramp time	S	0.1
Current pulses repetition rate	Hz	1.0
Field integrated strength	T-m	0.4923
Maximum water pressure drop	psi	80
LCW water inlet temperature (max)	С	30
LCW water rise temperature (max)	С	5.5

RCS Dipole Parameters

Parameter	Unit	Copper	Aluminum
Magnet integrated strength	T-m	0.4923	0.4923
Center field	т	0.24	0.24
Conductor	mm	20 x 35	20 x 60
Laminated core length	m	2.0	2.0
Cooling hole diameter	mm	10.5	No
Coil number of turns/pole		2	2
Number of racetrack coils		2	2
Magnet resistance	mΩ	0.57	0.43
Peak current	Α	1915	1915
Peak voltage/magnet	V	5.0	4.5
Average power losses/magnet	W	180	138
Number water cooling circuits		1	N/A
Water pressure drop	psi	5.0	N/A
Water flow velocity	m/s	1.0	N/A
Total water flow	gpm	1.4	N/A
Water temperature rise	С	0.5	N/A
			🚽 🕶 Ferr

6 FNAL-JLAB Meeting, RCS Dipoles

5/5/2023

Water Cooled RCS Dipole with Copper Coil

Air Cooled RCS Dipole Field with Al Coil

2 m long magnet integrated field quality.

5/5/2023

🛠 Fermilab

For air cooled magnets aluminum coils will cost much lower than copper coils because of 3.6 times difference in the raw material cost. Copper cost is 8500 \$/ton, aluminum 2350 \$/ton.

- Air cooled magnet with the aluminum coil is a preferrable cost efficient choice. Beside Al is better technological material than copper: easier bend, weld, machine.
- Larger Al resistance could be compensated by larger cross-section.
- Now most of electrical transmission lines, bus bars made from aluminum.
- CERN FCC Lepton Collider Magnets with close parameters are based on Al conductor.
- Major issue for RCS dipoles is a very low beam injection field only 130 Gauss. The next step in the design will be to improve the magnet performance for the low field area.

