

The Piper at the Gates of Dome: Probing Low-Mass New Physics with the CMS Scouting and Parking Pipelines

Andre Frankenthal (Princeton University)

Fermilab Wine & Cheese Seminar

July 28th, 2023

Accelerating Science

Accélérateur de science

VER TEST TAV INTERNATION

The evolution of particle accelerators

Ernst Lawrence's first cyclotron, 1929 (Berkeley). Proton energy: ~ 1 MeV

VET TEX TEX TYM

The evolution of particle accelerators

Cosmotron, the first proton synchrotron accelerator, 1953 (Brookhaven National Lab). Energy: 3.3 GeV

Stanford Linear Accelerator, 1966 (SLAC). Electron energy: 50 GeV

Stanford Linear Accelerator, 1966 (SLAC). Electron energy: 50 GeV

arge Electron Positron Collider, 1989 (CERN). Electron & positron energy: 209 GeV

CCMS powers users

An example from the CMS experiment

Adapted from Nadja Strobbe

But there's plenty of room at the bottom!

An example from the CMS experiment

Adapted from Nadja Strobbe

But there's plenty of room at the bottom!

CMS

An example from the CMS experiment

Adapted from Nadja Strobbe

What new physics could exist at "low mass"?

7/28/23

What new physics could exist at "low mass"?

- Dark matter could belong to a complex dark sector
- Simple extension of the standard model (SM) is the dark photon (A'):
 - A' is the gauge boson of a new symmetry, $U(1)_D$, similar to photon in SM
 - Only dark matter (not SM) is charged under this gauge symmetry
 - A "bridge" to the dark sector is permitted via special γ -A' mixing:
 - This additional term in the Lagrangian creates an EM-A' coupling:
 - Finally, mass is allowed via symmetry breaking:

Holstom, PLB 166 (1986) 196

SM

Searches for the dark photon

Searches for the dark photon

The Large Hadron Collider

Compact Muon Solenoid (CMS)

- LHC collides proton bunches with a rate of 40 MHz (every 25 ns)
- \rightarrow Impossible to store every single collision event
- CMS developed a two-tier trigger system to cope:
 - Hardware-based (Level-1 or L1)
 - Software-based (High-level trigger or HLT)

40 MHz

- LHC collides proton bunches with a rate of 40 MHz (every 25 ns)
- ightarrow Impossible to store every single collision event
- CMS developed a two-tier trigger system to cope:
 - Hardware-based (Level-1 or L1)
 - Software-based (High-level trigger or HLT)

40 MHz

Rate: **100 kHz** (hard limit) Latency: 3.2 μs (hard limit)

- LHC collides proton bunches with a rate of 40 MHz (every 25 ns)
- \rightarrow Impossible to store every single collision event
- CMS developed a two-tier trigger system to cope:
 - Hardware-based (Level-1 or L1)
 - Software-based (High-level trigger or HLT)

Rate: **100 kHz** (hard limit) Latency: 3.2 μ s (hard limit)

HLT

Rate: **1 kHz** (soft limit) Latency: 500 ms (hard limit) Data BW: 5 GB/s (hard limit)

40 MHz

- The need for a trigger system limits experimental sensitivity to rare processes involving low mass particles
 - → Momentum thresholds too high to efficiently accept events featuring decays of such particles
- CMS has developed strategies to boost acceptance to such processes:
 - Data scouting: Limit information saved per event in exchange for more events
 - Data parking: Save (or park) more raw events in storage, only reconstructing later when there is CPU available
- Initially devised as "siblings": first scout for new signatures, then reconstruct parked data once found
 - But active development over the years offered further improvements to pipelines

The scouting and parking pipelines

The scouting and parking pipelines

A brief history of CMS scouting & parking

A brief history of CMS scouting & parking

The muon scouting dataset

- Scouting exchanges complete event information for higher trigger rates
 - Only save muon objects per event
 - Trigger rates up to 60x higher
- Dimuon momentum thresholds substantially reduced

■ (17, 8) GeV → (3, 3) GeV

Data stream	Rate [Hz]	Event size	Bandwidth [MB/S]
Muons	420	0.86 MB	360
Scouting Muons	4580	8.9 KB	40

- At least two muons with p_T > 3 GeV
- No mass cut (low mass resonances)
- No displacement cuts (Up to ~ 10 cm displacement)

137 fb⁻¹ (standard triggers) and 96.6 fb⁻¹ (scouting triggers) (13 TeV)

What new physics could exist at "low mass"?

7/28/23

• Most important L1 selections:

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{2\mu}$ [GeV]	Charge
#1	>4.0 (4.5)	-	<1.2	-	OS
#2	-	< 1.5	< 1.4	-	OS
#3	>15,>7	-	-	-	-
#4	>4.5	< 2.0	-	7–18	OS

• Most important L1 selections:

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{2\mu}$ [GeV]	Charge
#1	>4.0 (4.5)	-	<1.2	-	OS
#2	-	< 1.5	< 1.4	-	OS
#3	>15,>7	-	-	-	-
#4	>4.5	< 2.0	-	7–18	OS

 Can we use this neat spectrum to search for new physics with low masses?

Scouting for dark photons

- Analysis goal and basic strategy:
 - Search for dimuon resonances in a modelindependent and general way
 - Look for a bump hunt in the dimuon mass spectrum
- Define custom set of muon identification (ID) criteria to suppress backgrounds
- Measure trigger and reconstruction efficiencies with data-driven methods
- Derive model-independent limit as a function of $\sigma \cdot B \cdot A$
- Then compute above terms for specific models

- Measure trigger and ID efficiencies in data & MC to derive uncertainties
- Use BDT for ID, trained on Y and J/ψ : OS \rightarrow signal, SS \rightarrow background
- Derived uncertainties: 2-20% (trigger), 4-20% (ID)

Event categories

Inclusive

Drell-Yan

- Boosted (gluon-gluon fusion): $p_T^{\mu\mu}$ > 20 (35) GeV for $m_{\mu\mu}$ > 4.2 (< 2.6) GeV
- Inclusive (Drell-Yan): no $p_T^{\mu\mu}$ cut

П

Boosted

Gluon-gluon fusion

 Also have maximum displacement cut to focus on prompt production

^g 000000

a QQQQ

- Model signal shape from fits to SM resonances
 - Double Crystal-Ball + Gaussian
 - Assign 20% uncertainty on resolution
- Largest excess observed at $m_{\mu\mu}$ = 2.41 GeV in the boosted category
 - 3.2 σ local, 1.3 σ global significances

 - To be watched

Model-independent limits

- Limits derived for $\sigma \cdot B \cdot A$
- CMS PAS EXO-21-005 Includes experimental uncertainties (no theory dependence)

Ann. Rev. 71 (2021) 37

LHC can access a vast range of mass scales

LHC can access a vast range of mass scales

Can we go even lower in mass?

• Most important L1 selections:

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{2\mu}$ [GeV]	Charge
#1	>4.0 (4.5)	-	<1.2	-	OS
#2	-	< 1.5	< 1.4	-	OS
#3	>15,>7	-	-	-	-
#4	>4.5	< 2.0	-	7–18	OS

 Can we use this neat spectrum to search for new physics with low masses?

• Most important L1 selections:

L1 path	$p_{\rm T}$ [GeV]	$ \eta $	ΔR	$m_{2\mu}$ [GeV]	Charge
#1	>4.0 (4.5)	-	<1.2	-	OS
#2	-	< 1.5	< 1.4	-	OS
#3	>15,>7	-	-	-	-
#4	>4.5	< 2.0	-	7–18	OS

 Can we use this neat spectrum to search for new physics with low masses?

Compared Mont Selence

- Neutral pseudoscalars like π^0
- $S = Q = I = J = L = 0 \rightarrow I^{G}(J^{PC}) = 0^{+}(0^{-+})$
- Mixing of all light quark states:

$$\eta = \frac{1}{\sqrt{6}} \left(u\bar{u} + d\bar{d} - 2s\bar{s} \right)$$
$$\eta' = \frac{1}{\sqrt{3}} \left(u\bar{u} + d\bar{d} + s\bar{s} \right)$$

- Masses / widths:
 - η : 547.9 MeV / 0.0013 MeV
 - η': 957.8 MeV / 0.2 MeV
- Mixing angle estimated at 11.5%

η production at the LHC

CMS

- The η meson is copiously produced in pp scattering at the LHC
- Clearly visible peak in the dimuon invariant mass spectrum with scouting dataset

η production at the LHC

- The η meson is copiously produced in pp scattering at the LHC
- Clearly visible peak in the dimuon invariant mass spectrum with scouting dataset
- Fitting gives about 4.5M $\eta \rightarrow \mu\mu$ in this dataset
- B($\eta \rightarrow \mu\mu$) = 5.8(0.8)×10⁻⁶, so there are a lot of $\eta's$ (~10¹²)

Some context

 CMS is competitive with several past, current and planned experiments dedicated to light meson physics:

• This huge η sample makes one contemplate the study of rare η decays

- This huge η sample makes one contemplate the study of rare η decays
- Rich phenomenological motivation exists in the literature

A candidate $\eta \rightarrow 4\mu$ decay!

- Peak clearly seen at 0.548 GeV
- > 10σ statistical significance

- Use reference channel $\eta \to \mu \mu$ to measure target channel $\eta \to \mu \mu \mu \mu$
- $B(\eta \rightarrow 2\mu) = (5.8 \pm 0.8) \times 10^{-6}$, a precision of 13.8%
- Also need to measure the CMS acceptance to decays in simulation

 $A_{4u}^{\iota,J}$ and $A_{2u}^{\iota,J}$ acceptances

- Measured from MC simulation with ${\sim}1k$ events per GeV of p_T
- Acceptance: all muons are compatible with beam spot and at least one vertex in the event
- Mostly limited by scouting trigger efficiency in 2μ channel, and by reconstruction efficiency of all four muons in 4μ channel
- Acceptance goes to zero around $p_T^{2\mu} \sim 8~{\rm GeV}$ and $p_T^{4\mu} \sim 14~{\rm GeV}$

- Extract $N_{2\mu}^{i,j}$ and derive $d\sigma/dp_T$ of the η from fits of $m_{\mu\mu}$ spectrum per $p_T^{\mu\mu}$ bin
- Agreement with ALICE measurement (done to $p_T^{\mu\mu} \sim 40~{\rm GeV}$ only) is robust after accounting for acceptance

- CMS
- Fit $m_{4\mu}$ spectrum to extract signal ($N_{4\mu}=50$) and bkg. (17) yields
- Use sideband (0.6–0.9 GeV) and signal MC to study $p_T^{4\mu}$ spectrum

- Studied several other decay modes as potential resonant backgrounds
 - Via toy MC simulations reproducing approximate expected kinematics
- Conclusion: no other modes can mimic the observed peak

- Can use sideband p_T spectrum in data and signal MC to predict yields in signal region
- Very good agreement between data and MC \rightarrow no indication of systematic issues with MC-estimated acceptance across the p_T range

- Uncertainties are roughly balanced between statistical (14.9%), systematic (14.3%) and on $B(\eta \rightarrow 2\mu)$ (13.8%)
- Main systematic uncertainties:
 - Imperfect knowledge of the acceptance curves from simulation
 - Different fit model choices when extracting the yields
- Relative uncertainty estimate on $B(\eta \rightarrow 4\mu)/B(\eta \rightarrow 2\mu)$ is **22%**
- Absolute uncertainty estimate on $B(\eta \rightarrow 4\mu)$ is **26%**
- (Details in backup)

• Relative branching fraction:

 $\frac{B(\eta \to 4\mu)}{B(\eta \to 2\mu)} = (0.86 \pm 0.14 \text{ (stat.)} \pm 0.12 \text{ (syst.)}) \times 10^{-3} = (0.9 \pm 0.1) \times 10^{-3}$

Absolute branching fraction:

$$B(\eta \to 4\mu) = (5.0 \pm 0.8 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.7 \text{ (B}_{2\mu})) \times 10^{-9}$$

 $B(\eta \to 4\mu) = (5.0 \pm 1.3) \times 10^{-9}$

Prediction: $(3.98 \pm 0.15) \times 10^{-9}$

Chin. Phys. C 42 (2018) 023109

• Represents an improvement of over 5 orders of magnitude over previous measurement: $B(\eta \rightarrow 4\mu) < 3.1 \times 10^{-4}$

arXiv:2305.0490 (accepted by PRL

CMS is sensitive to low-mass physics!

But could we go even lower in mass??

- Several improvements in scouting for Run 3 (2022 present):
 - HLT speed:
 - Accelerate pixel tracking and calorimeter reconstruction with GPUs
 - Running overall HLT scouting reconstruction in Run 3 at ~ **30 kHz** (350 MB/s)
 - Event content:
 - Reconstruct and store more information per event, while keeping size stable
 - Now include in Run 3 electrons and photons, and possibility of missing transverse momentum
 - Event size remains small (~ 6 KB after compressions)
 - L1 rate:
 - For HL-LHC (Run 4, ~ 2028), L1 trigger will feature much improved resolution
 - \rightarrow Opportunity for L1 scouting at close to full LHC rate!

ω

kinetic mixing

Search for dark photons with the η

arXiv:2203.07651

- Proposed REDTOP experiment at Fermilab (10¹⁸ POT) or CERN (10¹⁷ POT) is sensitive to dark photons
- Each scenario corresponds to about 10^{13} (10^{12}) η / year
- CMS has about $5 \times 10^{12}~\eta$ in 2 years of Run 2 scouting (100 fb^{-1})
 - We are an η factory!
- Challenge in Run 3 is to reconstruct $A' \rightarrow e^+e^-$ and the photon in $\eta \rightarrow \gamma A'$ with scouting or parking to reach below $m'_A \sim 200$ MeV
- But $m_{A'} > 200$ MeV may be feasible with current setup

- True muonium is a bound state of two muons, never observed (unlike muonium, a μe bound state)
- Predicted branching ratio of $\eta \rightarrow \gamma ~TM$ is $\sim 10^{-10} \text{--} 10^{-9}$
- Main decay mode is e^+e^- , but also dissociates to two muons in material
- Use displaced ee vertex (with material veto) to isolate signal, plus photon
- Might be possible in CMS with B-parking dataset (see projected LHCb limits)

X17 search and resonant production

- Recent results indicate anomalous excesses in ⁴He and ⁸Be atomic measurements of internal pair creation
- A possible explanation is the existence of a new proto-phobic boson with 16.7 MeV mass (X17)
- Could potentially look for $\eta \rightarrow \gamma X17 \rightarrow \gamma ee$ but will depend on electron acceptance

To be continued...

- There's plenty of interesting physics at "low" masses!
- High-energy and high-intensity accelerators allow us to probe promising new physics scenarios also at these low masses
- Complex dark sectors could feature an array of light particles hidden from view, such as the dark photon and X17
- The data scouting and parking techniques employed by CMS are promising avenues to gain experimental sensitivity to rare and lowmass phenomena
- Two scouting results shown today: $\eta
 ightarrow 4\mu$ and search for A'
- Stay tuned for more updates in this area soon!

Backup slides

- Absolute uncertainty estimate on $B(\eta \rightarrow 4\mu)$ is **25.7%**
- Relative uncertainty estimate on $B(\eta \rightarrow 4\mu)/B(\eta \rightarrow 2\mu)$ is **21.7%**

		<u> </u>
Line	Source	Value (%)
1	Track $p_{\rm T}$ threshold	9.0
2	Trigger $p_{\rm T}$ threshold	8.4
3	Efficiency plateau	3.2
4	Fit signal model, $N_{4\mu}$	3.4
5	Fit background model, $N_{4\mu}$	4.2
6	Fit signal and background models, $N_{2\mu}^i$	3.8
7	Total systematic uncertainty	14.3
8	Statistical uncertainty	16.3
9	Total relative uncertainty	21.7
10	Uncertainty in $B(\eta \rightarrow 2\mu)$	13.8
11	Total absolute uncertainty	25.7
		//

- Slice the spectrum into bins of p_T & η , then fit the invariant mass distribution $m_{\mu\mu}$ to obtain the $\eta \to 2\mu$ yield per p_T & η bins
- Fit MC signal first to obtain guidance on parameters
- Signal model in MC:
 - Double-Gaussian
- Sig. & bkg. models in data vary by p_T :

$p_{\rm T}$ range	Signal function	Background function	
(6,8) GeV	Double-Gaussian (floating ratios)	Chebychev-3	
(8,16) GeV	Double-Gaussian (fixed ratios)	Chebychev-3	
(16,28) GeV	Single-Gaussian	Chebychev-3	
(28, 100) GeV	Single-Gaussian	Chebychev-2	

Table 3: Fit functions used in the 2- μ fits for various $p_{\rm T}$ ranges.

Extracting $N_{4\mu}$ signal

- Fit MC signal first to fix parameters
- Signal model:
 - Crystal-Ball (CB) only (data); CB + Gaussian (MC)
 - Fix N_{CB} and α_{CB} from MC, float m_{CB} and s_{CB}
- Background model:

•
$$f(x) = (x - 4m_{\mu})^{\beta}$$
 (data)

Parameter	Best-fit value in MC	Best-fit value in data
β	_	1.97 ± 0.11
m_0	0.550 ± 0.0004	$0.550\pm0.001~GeV$
σ	0.0049 ± 0.0004	$0.0053\pm0.0008~GeV$
α	-0.83 ± 0.10	fixed (-0.83)
N	8.1 ± 9.3	fixed (10)
\mathcal{N}_{sig}	-	49.9 ± 8.4
\mathcal{N}_{bkg}	-	906.1 ± 30.5

- Potential sources of peaking backgrounds consist of other η decay modes with $\pi \to \mu$ misidentification, $\gamma \to \mu\mu$ conversion, or both
- Comprehensive study of these modes with toy MC simulations

Resonant background studies

But there's plenty of room at the bottom!

1-100 GeV mass range