First look at the π^0 event reconstruction in ProtoDUNE-I 2 GeV data

Vikas Gupta **Hadron Analysis meeting** 10-May-2023

Content

- π^0 -decay analysis overview
- π^0 shower selection
- Shower energy correction
- π^0 event selection and $m_{\gamma\gamma}$
- π^0 -decay reconstruction at event level
- Extending analysis to lower nHits data
- Summary and Future plans

π^0 -decay analysis overview

π^0 decay is an useful candle for validating shower reconstruction in (Proto)DUNE

- π^0 are produced commonly from hadronic interactions and decay promptly to two photons (EM showers).
- The showers are boosted significantly in the lab frame:

$$\theta \ll 180$$
, and $E_1 \neq E_2$.

- 1. Identifying π^0 showers and reconstructing the invariant mass is a good test for validating shower energy and direction reconstruction.
- 2. Discriminating electron showers from a photon shower (of π^0 decay) is also an important background challenge for DUNE.

$$m_{\gamma \gamma}^2 = 2E_1E_2(1 - \cos\theta)$$

Dataset used in this analysis

- I have used analysis ntuples created by Jake Calcutt for the 2 GeV dataset:
 - Data: xroot://fndca1.fnal.gov:1094/pnfs/fnal.gov/usr/dune/tape_backed/dunepro/protodune-sp/root-tuple/2022/detector/physics/PDSPProd4/00/00/54/29/PDSPProd4_data_2GeV_reco2_ntuple_v09_42_03_01.root
 - MC: xroot://fndca1.fnal.gov:1094/pnfs/fnal.gov/usr/dune/tape_backed/dunepro/protodune-sp/root-tuple/2022/mc/physics/PDSPProd4a/20/91/32/85/PDSPProd4a_MC_2GeV_reco1_sce_datadriven_v1_ntuple_v09_41_00_03.root
- Ntuple variables used in this analysis:
 - Beam tag: reco_beam_type
 - Beam particle (for MC): true_beam_PDG
 - Pandora tag: reco_daughter_pandora_type
 - CNN score : reco_daughter_PFP_emScore_collection
 - nHits: reco_daughter_PFP_nHits_collection
 - E_{shower} , Dir_{shower} : reco_daughter_allShower_energy, reco_daughter_allShower_dirX(/Y/Z)

Complete analysis flowchart for selecting π^0 events

π^0 shower selection

CNN score for all primary particle daughters

- Some disagreement for daughter particle (shower) CNN score between MC and data.
 - weighted CNN score only affects distribution at < ~0.25 (doesn't affect analysis using showers)

CNN score for all primary particle daughters

- Some disagreement for daughter particle (**shower**) CNN score between MC and data.
 - weighted CNN score only affects distribution at < ~0.25 (doesn't affect analysis using showers)

CNN score for all primary particle daughter tagged by Pandora as showers (primary daughter showers)

- The primary daughter showers are mostly photons coming from π^0 decay:
 - Taking data above CNN score of 0.6 will give mostly π^0 daughters.

CNN score: 0.6-0.95

CNN score for all primary daughter showers

- The primary daughter showers are mostly photons coming from π^0 decay:
 - Taking data above CNN score of 0.6 will give mostly π^0 daughters.
 - above CNN score of 0.95, we have a lot of broken showers (low completeness) that should be removed.
 - Alternatively, they are also removed with nHits>80 cut.

nHits >20 applied for better visibility

A higher CNN score for low completeness showers should point towards some improvement needed in the reconstruction.

CNN score: 0.6-0.95

Number of hits for all primary daughter showers

- The primary daughter showers are mostly photons coming from π^0 decay:
 - Ideally, we would like to consider data above 20
 nHits to maximize the efficiency.

nHits > 80

Number of hits for all primary daughter showers

- The primary daughter showers are mostly photons coming from π^0 decay:
 - Ideally, we would like to consider data above 20
 nHits to maximize the efficiency.
 - Stricter cuts on are needed due to low completeness of showers at low nHits:
 - we get artificially high statistics at low energy due to these broken showers.

nHits > 80

Number of hits for all primary daughter showers

- The primary daughter showers are mostly photons coming from π^0 decay:
 - Ideally, we would like to consider data above 20
 nHits to maximize the efficiency.
 - Stricter cuts on are needed due to low completeness of showers at low nHits:
 - we get artificially high statistics at low energy due to these broken showers.
 - A lot of outliers are removed for nHits > 80. The showers energy looks underestimated by 10%-20%

nHits > 80

Shower selection in numbers

1. Selecting all π^0 showers in events

Purity =
$$\frac{N_{\pi 0_daughters}}{N_{sample}}$$

Efficiency =
$$\frac{N_{\pi 0_daughters}}{N_{\pi 0_daughters} available}$$

Number of PFParticle daughters in dataset	Data	MC	Ratio (Data/MC)	Purity (Cumulative)	Efficiency (Cumulative)
All daughters	1580360	372250	4.24		
Sanity check	1384840	332605	4.16	0.201	1
Pandora showers	361952	71555	5.06	0.638	0.682
0.6 < CNN score < 0.95	166477	37554	4.43	0.815	0.457
nHits >80	76369	17372	4.39	0.934	0.242

Shower energy correction

Estimating shower energy correction function

- The correction factor can be calculated as a function of reconstructed energy:
 - Find most likely fraction bias $(E_{reco}/E_{true} -1)$ in bins of E_{reco} .

Estimating shower energy correction function

- The correction factor can be calculated as a function of reconstructed energy:
 - Find most likely fraction bias (E_{reco}/E_{true} −1) in bins of E_{reco}.
 - Fit the most likely value per bin to get correction factor as function of E_{reco}.

Linear fit with $m = -1.76 \text{ e}-05 \pm 4.38 \text{ e}-05$ $c = -0.149 \pm 0.022$

 $E_{corr} \approx E_{reco} / 0.851$

Energy reconstruction bias is greatly reduced after applying energy correction

- The correction method does a good job and after correction, the bias is reduced greatly.
 - For nHits >80 data, an energy independent correction factor is adequate.

 π^0 event selection and $m_{\gamma\gamma}$

Shower pair selection for π^0 reconstruction

- Most events have either one or two showers that pass initial cuts:
 - Choose the two most energetic showers in the event, if more than two showers.
- Assume the two showers come from a π^0 -decay and reconstruct:
 - Opening angle from shower directions
 - Energy of π^0 (= $E_{shower1}$ + $E_{shower2}$)
- Calculate $m_{\gamma\gamma}$ for shower pair that pass cuts on angle and π^0 energy.

Opening angle of shower pairs

- π^0 showers peak at low opening angle and above 0.7 radian, the total background starts to dominate
- Below 0.1 rad, also low signal/bkg.

0.1 rad < $\theta_{\pi 0}$ < 0.7 rad

π^0 energy

- π^0 energy can be estimated by summing corrected energy for both showers.
- Removing data above 1000 MeV as signal/background is quite low at higher energies.

 $E_{\pi 0}$: < 1000 MeV

Reconstructed π^0 mass

- Fit results for π^0 reconstructed mass disagrees slightly with the true invariant mass of 134.97 MeV/c² for both data and MC.
- Statistics are quite low due to
 - Extremely low efficiency of finding both π^0 showers in an event.
 - nHits > 80 cut required for good shower energy reconstruction

Gaussian fit results (m $_{\gamma\gamma}$): MC: 145.024 ± 2.35 MeV/c² (signal only: 142.1 ± 2.32 MeV/c²) Data: 147.622 ± 1.68 MeV/c²

π^0 event selection in numbers

Purity =
$$\frac{N_{\pi 0_unique_daughter_pairs}}{N_{sample}}$$
 Efficiency =
$$\frac{N_{\pi 0_unique_daughter_pairs}}{N_{\pi 0_unique_daughter_pairs}}$$
 available

2. Selecting **two** distinct π^0 showers in each event

Number of PFParticle daughters in dataset	Data	MC	Ratio (Data/MC)	Purity (Cumulative)	Efficiency (Cumulative)
Shower pair	11970	2764	4.33	0.449	1 (0.0185 of all showers)
0.1 rad < Opening angle < 0.7 rad	3970	1156	3.43	0.763	0.710
π^0 energy < 1000 MeV/c ²	2756	916 (768)	3	0.838	0.618

768 daughters : 384 π^{0} events in MC

 π^0 -decay reconstruction at event level

Event with two π^{0} 's

Color scheme:

- 1. Hit cluster doesn't belong to reco object assigned to a π^0 daughter ->black.
- reco object is tagged as track -> black arrow.
- 3. If a π^0 was produced in the event:
 - Shower hits are red
 - Shower hits are green and blue if I did reconstruct a π^0 in my analysis.

Run: 20915139, subrun: 9, event: 1931

■ Pandora Tracks

Color scheme:

- 1. Hit cluster doesn't belong to reco object assigned to a π^0 daughter ->black.
- reco object is tagged as track -> black arrow.
- 3. If a π^0 was produced in the event:
 - Shower hits are red
 - Shower hits are green and blue if I did reconstruct a π^0 in my analysis.

Color scheme:

- 1. Hit cluster doesn't belong to reco object assigned to a π^0 daughter ->black.
- reco object is tagged as track -> black arrow.
- 3. If a π^0 was produced in the event:
 - Shower hits are red

Color scheme:

- Hit cluster doesn't belong to reco object assigned to a π^0 daughter ->black.
- reco object is tagged as track -> black arrow.
- If a π^0 was produced in the event:
 - Shower hits are red

Run: 20917038, subrun: 22, event: 783

Event with three π^{0} 's

Color scheme:

- 1. Hit cluster doesn't belong to reco object assigned to a π^0 daughter ->black.
- reco object is tagged as track -> black arrow.
- 3. If a π^0 was produced in the event:
 - Shower hits are red

Run: 20917145, subrun: 23, event: 1169

How many π^0 's are contributing to PFParticle daughters?

- I am looking at data with only sanity check applied.
- We are only able to identify a very small number of π^0 decays that are produced in ProtoDUNE events.
- Note: Zero π^0 's means that we see no reco object from its decay in PFParticle daughters (not that none were produced).

How often do we see both unique showers in events with only a single π^0 decay?

- For events with only a single π^0 decay contributing:
 - About 2/3rd decay do not have both photons in the PFParticle daughter objects.

How many reco object are created from a single π^0 daughter (with both daughter seen in the event)?

- For events with only a single π^0 decay contributing:
 - About 2/3rd decay do not have both photons in the PFParticle daughter objects.
 - Quite often the true π^0 daughters do not leave only a single Pandora shower each (Ideal scenario).
 - How often is the energy well reconstructed in the Ideal scenario?

When a reco object has no Pandora tag.

How often is the energy well reconstructed in the Ideal scenario?

- Using events that have one Pandora shower each for π^0 daughter. (3538 events)
- We still have a lot of low completeness showers:
 - Shower hits are getting absorbed by nearby reco objects?
 - Does the first photon absorb hits from the second one often as well?
- Will study these events further.

(no energy correction applied)

Extending analysis to lower nHits data

Shower energy correction with nHits > 20

+ using only showers that pass π^0 cuts as well

Function taken from Kang Yang's π^0 analysis

$$p_3 + \frac{(p_0 - p_3)}{1 + \left(\frac{x}{p_2}\right)^{p_1}}$$

fit with non-linear function: p0 =-0.85 +/- 0.05 p1 =5.85 +/- 1.41 p2 =91.17 +/- 5.07 MeV p3 =-0.146 +/- 0.018

(Plot taken from **Milo Vermulin's** PhD thesis)

Effect of energy correction on energy reconstruction bias

- The correction method does a reasonable job but:
 - showers with a wide true shower energy profile contribute to low nHits reco showers.
 - A single correction factor can only redistribute the offset from mostly negative to both negative and positive sides at best.

Reconstructed π^0 mass for Nhits>20

- Fit results for π^0 reconstructed mass agree well with the true invariant mass for both data and MC.
 - But as we see from the corrected reco energy, it is not possible to find a meaningful energy correction at low energy/nHits.
 - We need improvement at reco level for this analysis.

Gaussian fit result:

MC: $134.24 \pm 1.5 \text{ MeV/c}^2$

Data: $131.41 \pm 0.88 \text{ MeV/c}^2$

π^0 event selection in numbers for Nhits>20

	Data	МС	Ratio (Data/MC)	Purity (Cumulative)	Efficiency (Cumulative)
nHits >20	140012	31708	4.41	0.871	0.412
Shower pair	43552	10400	4.18	0.442	1 (0.068 of all showers)
0.1 rad < Opening angle < 0.7 rad	11078	3260	3.39	0.674	0.482
π^0 energy < 1000 MeV/c ²	8828	2804 (1966)	3.14	0.701	0.431

^{~3} times more events compared to nHits>80.

Summary and Future plans

Summary / Future plans

Summary:

- The π^0 analysis works reasonably for well reconstructed data (i.e. nHits >80):
 - 1. We have a very low efficiency in finding both π^0 showers due to missing/incomplete reconstruction.
 - 2. Including data from low nHits is currently not useful as shower energy correction doesn't work.

Future plans:

- Any suggestions on what should be done next are welcome.
- I will work on Pandora reconstruction to:
 - understand why we don't see most π^0 events completely during the Pandora reconstruction stage.
 - Improve completeness of showers in general (if possible).

Thanks for your attention

- I would also like to thank a few particular people for their contribution in this work:
 - Milo Vermeulen and Kang Yang for their excellent work on π^0 event reconstruction.
 - Jake Calcutt for creating the analysis ntuples.
 - Miguel Ángel García-Peris for many helpful discussions on ProtoDUNE.

Backup slides

```
_____
_____
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , -211 , 600591 , pi-Inelastic, Track , 211 , 1
1 , 1000010020 , 601363 , hIoni, Track , 211 , 600590
2 , 1000010020 , 601363 , hIoni, Track , 211 , 600590
3 , 22 , 601947 , conv, Track , 111 , 601351
                                                a photon is reconstructed as three daughters,
4 , 22 , 601947 , conv, Shower , 111 , 601351
                                                       second shower is missing
5 , 22 , 601947 , conv, Shower , 111 , 601351
6 , 2212 , 600711 , hIoni, Track , 2112 , 600594
______
level 2
_____
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
_____
```

```
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , -13 , 640056 , Decay, Track , 211 , 11
1 , -13 , 640056 , Decay, Track , 211 , 11
2 , 22 , 647282 , conv, Shower , 111 , 647138_
                                              a photon is reconstruced as two daughters.
                                                     second shower is missing
3 , -13 , 640056 , Decay, Track , 211 , 11
4 , 22 , 647282 , conv, Shower , 111 , 647138
5 , -13 , 640056 , Decay, Shower , 211 , 11
______
level 2
_____
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
primary daughter 1 has 1 secondary daughters
0 , -13 , 640056 , Decay, Track , 211 , 11
_____
```

```
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , 211 , 1 , pi+Inelastic, Track , -999 , -999
1 , 2212 , 737979 , hIoni, Track , 211 , 1
______
                                               a photon is reconstructed as secondary daughter,
level 2
                                                        second shower is missing
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
primary daughter 1 has 2 secondary daughters
0 , 211 , 737976 , Decay, Track , 211 ,
1 , 22 , 738742 , conv, Shower , 111 , 737975
_____
primary is beam particle 1
Got primary CNN score 0.101487, true PDG code: 211
Pandora track: 0x1c04a9b8, shower: 0
```

```
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , 211 , 823487 , pi+Inelastic, Track , 211 , 1
1 , 22 , 824115 , conv, Track , 111 , 823485
                                                         first part is considered track by pandora
2 , 2212 , 823488 , hIoni, Track , 211 , 1
                                                         a photon is reconstructed as its own daughter,
                                                                 second shower is missing
level 2
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
primary daughter 1 has 1 secondary daughters
0 , 22 , 824115 , conv, Shower , 111 , 823485
primary is beam particle 1
Got primary CNN score 0.168034, true PDG code: 211
Pandora track: 0x127ec1f0, shower: 0
```

```
-----
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , 22 , 680782 , conv, Shower , 111 , 680351 both shower are reconstructed as primary
1, 22, 680783, conv, Shower, 111, 680351
level 2
_____
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
______
primary is beam particle 1
Got primary CNN score 0.38757, true PDG code: 211
Pandora track: 0x33c38b68, shower: 0
```

```
______
_____
Print full event
particle PDG code: 211 , particle id: 1 Is a track
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
0 , 211 , 664181 , pi+Inelastic, Track , 211 , 1
1 , 22 , 666247 , conv, Shower , 111 , 664179
                                               Two showers from two different PiO's,
2 , 22 , 664581 , conv, Track , 111 , 664182
                                               only one is identified as a shower
level 2
_____
Daughter index , PDG code , particle id , parent end process , Pandora classification , parent PDG , parent id
______
_____
primary is beam particle 1
Got primary CNN score 0.378347, true PDG code: 211
Pandora track: 0x5efcd768, shower: 0
```