Faster Monte Carlo via Low Discrepancy Sampling

Fred J. Hickernell Illinois Institute of Technology Dept Applied Math Ctr Interdisc Scientific Comput Office of Research hickernell@iit.edu sites.google.com/iit.edu/fred-j-hickernell

Thank you for your invitation and hospitality, Slides at speakerdeck.com/fjhickernell/argonne2023maytalk Jupyter notebook with computations and figures **beg** Visit us at qmcpy.org

Argonne Seminar, revised Wednesday 24th May, 2023

- Fred S. Hickernell (father), PhD Physics, IEEE Fellow, Motorola researcher
- Robert K. Hickernell (brother), PhD Physics, NIST Division Director
- Thomas S. Hickernell (brother), PhD Physics, Motorola researcher, elite charter school teacher

End

References

- Fred S. Hickernell (father), PhD Physics, IEEE Fellow, Motorola researcher
- Robert K. Hickernell (brother), PhD Physics, NIST Division Director
- Thomas S. Hickernell (brother), PhD Physics, Motorola researcher, elite charter school teacher
- Myself, BA mathematics and physics who became an applied mathematician

Stopping Rules

Transforming the Integrand

End

References

Message

Problems in Bayesian inference, uncertainty quantification, quantitative finance, (high energy) physics¹, etc. require numerically evaluating

$$\underbrace{\mathbb{E}[f(\boldsymbol{X})]}_{\text{expectation}} = \underbrace{\int_{\Omega} f(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{\text{integral}}, \qquad \boldsymbol{X} \sim \varrho$$

Other more complicated problems include computing quantiles or marginal distributions.

¹M. R. Blaszkiewicz (Feb. 2022). "Methods to optimize rare-event Monte Carlo reliability simulations for Large Hadron Collider Protection Systems". MA thesis. University of Amsterdam. uRL: https://cds.cern.ch/record/2808520; A. Courtoy, J. Huston, et al. (2023). "Parton distributions need representative sampling". In: *Phys. Rev. D* 107.034008. uRL: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.034008; D. Everett, W. Ke, et al. (May 2021). "Multisystem Bayesian constraints on the transport coefficients of QCD matter". In: *Phys. Rev. C* 103.5. doi: 10.1103/physrevc.103.054904; D. Liyanage, Y. Ji, et al. (Mar. 2022). "Efficient emulation of relativistic heavy ion collisions with transfer learning". In: *Phys. Rev. C* 105.3. doi: 10.1103/physrevc.105.034910. 3/25

ity 000 Transforming the Integrand

End o References

Problems in Bayesian inference, uncertainty quantification, quantitative finance, (high energy) physics, etc. require numerically evaluating

$$\underbrace{\mathbb{E}[f(\boldsymbol{X})]}_{\text{expectation}} = \underbrace{\int_{\Omega} f(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{\text{integral}}, \qquad \boldsymbol{X} \sim \varrho$$

There is value in

- Iow discrepancy sampling, aka quasi-Monte Carlo methods
- data-driven error bounds
- flattening and reducing the effective dimension of the integrand
- quality quasi-Monte Carlo software like qmcpy¹
- physicists and quasi-Monte Carlo theorists collaborating more

¹S.-C. T. Choi, F. J. H., et al. (2023). *QMCPy: A quasi-Monte Carlo Python Library (versions 1–1.4)*. DOI: 10.5281/zenodo.3964489. URL: https://qmcsoftware.github.io/QMCSoftware/.

Stopping Rules

Message

Problems in Bayesian inference, uncertainty quantification, quantitative finance, (high energy) physics, etc. require numerically evaluating

$$\underbrace{\mathbb{E}[f(\boldsymbol{X})]}_{\text{expectation}} = \underbrace{\int_{\Omega} f(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{\text{integral}}, \qquad \boldsymbol{X} \sim \varrho$$

There is value in

- Iow discrepancy sampling, aka quasi-Monte Carlo methods
- data-driven error bounds
- flattening and reducing the effective dimension of the integrand
- quality quasi-Monte Carlo software like qmcpy
- physicists and quasi-Monte Carlo theorists collaborating more

Caveat: I know little about Markov Chain Monte Carlo (MCMC); limited success combining with guasi-Monte Carlo².

²S. Chen, J. Dick, and A. B. Owen (2011). "Consistency of Markov Chain Quasi-Monte Carlo on Continuous State Spaces". In: *Ann. Stat.* 9, pp. 673–701; Art B. Owen and Seth D. Tribble (2005). "A quasi-Monte Carlo Metropolis algorithm". In: *Proc. Natl. Acad. Sci.* 102, pp. 8844–8849. 3/25

Trapezoidal rule

Trio identity³ — the error of approximating an expectation or integral expressed as the product of three quantities

³F. J. H. (2018). "The Trio Identity for Quasi-Monte Carlo Error Analysis". In: *Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August 2016.* Ed. by P. Glynn and A. Owen. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin, pp. 3–27. DOI: 10.1007/978-3-319-91436-7; A. Courtoy, J. Huston, et al. (2023). "Parton distributions need representative sampling". In: *Phys. Rev. D* 107.034008. URL: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.034008; X. Meng (2018). "Statistical Paradises and Paradoxes in Big Data (I): Law of Lage Popluations, Big Data Paradox, and 2016 US Presidential Election". In: *Ann. Appl. Stat.* 12, pp. 685–726. 4/25

 x_0

 x_1

x2

r

*x*3

Trapezoidal rule

Trio identity³ — the error of approximating an expectation or integral expressed as the product of three *auantities*

- Discrepancy depends upon sample only
- Variation depends on integrand only, semi-norm

 x_A

³F. J. H. (2018). "The Trio Identity for Quasi-Monte Carlo Error Analysis". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August 2016. Ed. by P. Glynn and A. Owen. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin, pp. 3-27. DOI: 10, 1007/978-3-319-91436-7; A. Courtov, J. Huston, et al. (2023), "Parton distributions need representative sampling". In: Phys. Rev. D 107.034008. URL: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.034008; X. Meng (2018). "Statistical Paradises and Paradoxes in Big Data (I): Law of Lage Popluations, Big Data Paradox, and 2016 US Presidential Election". In: Ann. Appl. Stat. 12, pp. 685–726.

 x_1

 x_0

x2

r

*x*3

 x_A

Trapezoidal rule

Trio identity³ — the error of approximating an expectation or integral expressed as the product of three quantities

- Confounding is between -1 and 1 (Brass and Petras 2011, (7.15))
- Discrepancy reduced via clever or more sampling
- Variation value unknown, reduced via transformations

³F. J. H. (2018). "The Trio Identity for Quasi-Monte Carlo Error Analysis". In: *Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August 2016.* Ed. by P. Glynn and A. Owen. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin, pp. 3–27. DOI: 10.1007/978-3-319-91436-7; A. Courtoy, J. Huston, et al. (2023). "Parton distributions need representative sampling". In: *Phys. Rev. D* 107.034008. URL: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.034008; X. Meng (2018). "Statistical Paradises and Paradoxes in Big Data (I): Law of Lage Popluations, Big Data Paradox, and 2016 US Presidential Election". In: *Ann. Appl. Stat.* 12, pp. 685–726. 4/25

Independent and Identically Distributed (IID) Monte Carlo

$$\overbrace{\int_{\mathbb{R}^{d}} f(\mathbf{x}) \ \varrho(\mathbf{x}) \ d\mathbf{x}}^{\mathbb{E}[f(\mathbf{X})], \ \mathbf{X} \sim \varrho} - \frac{1}{n} \sum_{i=0}^{n} f(\mathbf{x}_{i}) \qquad \mathbf{x}_{i} \stackrel{\text{IID}}{\sim} \varrho$$
$$= \underbrace{\frac{\int_{\mathbb{R}^{d}} f(\mathbf{x}) \ \varrho(\mathbf{x}) \ d\mathbf{x} - \frac{1}{n} \sum_{i=0}^{n} f(\mathbf{x}_{i})}{\frac{1}{\sqrt{n}} \ \operatorname{std}[f(\mathbf{X})]}}_{\text{confounding}} \underbrace{\frac{1}{\sqrt{n}} \ \underbrace{\operatorname{std}(f(\mathbf{X}))}_{\text{variation}}}_{\text{variation}}$$

- RMS[confounding] = 1, but confounding could be $O(\sqrt{n})$
- Discrepancy depends on sample size only
- Variation reduced through transformations

Stopping Rules

Transforming the Integrand

End o References

Low Discrepancy Sampling aka Quasi-Monte Carlo⁴

 VAR is a semi-norm, more smoothness than $\mathrm{std},$ value generally unknown, reduced through transformations

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

$$+\frac{1}{n^2}\sum_{i,k=1}\left[1+0.5|x_{ij}-0.5|+0.5|x_{kj}-0.5|-0.5|x_{ij}-x_{kj}|\right]$$

 $\mathrm{DSC}(\{\boldsymbol{x}_i\}_{i=1}^n) = \mathcal{O}(n^{-1+\delta})$

DSC is the norm of the error functional, value known with $\mathcal{O}(dn^2)$ operations

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

$$\begin{split} \widetilde{\int_{[0,1]^d} f(\mathbf{x}) \, d\mathbf{x}} & -\frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) = \text{CNF}(f, \{\mathbf{x}\}_{i=1}^n) \, \text{DSC}(\{\mathbf{x}\}_{i=1}^n) \, \text{VAR}(f) \\ \text{DSC}^2(\{\mathbf{x}_i\}_{i=1}^n) &= \left(\frac{13}{12}\right)^2 \\ & -\frac{2}{n} \sum_{i=1}^n \prod_{j=1}^d \left(1 + 0.5 \, |x_{ij} - 0.5| - 0.5 (x_{ij} - 0.5)^2\right) \\ & + \frac{1}{n^2} \sum_{i,k=1}^n \left[1 + 0.5 \, |x_{ij} - 0.5| + 0.5 \, |x_{kj} - 0.5| - 0.5 \, |x_{ij} - x_{kj}|\right] \end{split}$$

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

$$\underbrace{\mathbb{E}[f(\boldsymbol{X})], \, \boldsymbol{X} \sim \mathcal{U}[0,1]^d}_{\int_{[0,1]^d} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}} - \frac{1}{n} \sum_{i=0}^n f(\boldsymbol{x}_i) = \operatorname{CNF}(f, \{\boldsymbol{x}\}_{i=1}^n) \, \operatorname{DSC}(\{\boldsymbol{x}\}_{i=1}^n) \, \operatorname{VAR}(f) \quad \underset{i=1}{\overset{s_i}{\underset{i=1}{\underset{s_i}{\atops_i}{\underset{s_{s_i}{\underset{s_{s_{s_i}{\underset{s_i}{\underset{s_i}{\underset{s_i}{\underset{s_{s_{s_i}{\underset{s$$

Lattice $X \sim \mathcal{U}[0, 1]$

⁴F. J. H. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: *Math. Comp.* 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.

topping Rules

Transforming the Integrand

End o References

Uncertainty in a Cantilevered Beam⁵

 $u(x) = g(\mathbf{Z}, x) =$ beam deflection

= solution of a differential equation boundary value problem

 $\mathbf{Z} \sim \mathcal{U}[1, 1.2]^3$ defines uncertainty in Young's modulus x =position

$$\mu(x) = \mathbb{E}[g(\mathbf{Z}, x)] = \int_{[0,1]^3} g(\mathbf{z}, x) \, d\mathbf{z} \approx \frac{1}{n} \sum_{i=1}^n g(\mathbf{Z}_i, x)$$
$$\mu(\text{end}) = 1037$$

⁵M. Parno and L. Seelinger (2022). Uncertainty propagation of material properties of a cantilevered beam. URL: https://um-bridge-benchmarks.readthedocs.io/en/docs/forward-benchmarks/muq-beam-propagation.html.

Tolerance. ε ⁶S.-C. T. Choi, F. J. H., et al. (2023). QMCPv: A guasi-Monte Carlo Python Library (versions 1–1.4). DOI: 10.5281/zenodo.3964489. UBL: https://gmcsoftware.github.io/OMCSoftware/.

100

 10^{1}

 10^{-1}

 10^{2} 10^{-2}

 10^{-2}

 10^{-1}

 10^{0}

Tolerance. ε

 10^{1}

 10^{2}

⁶S.-C. T. Choi, F. J. H., et al. (2023). *QMCPy: A quasi-Monte Carlo Python Library (versions 1–1.4)*. DOI: 10.5281/zenodo.3964489. URL: https://qmcsoftware.github.io/QMCSoftware/.

Stopping Rules

Transforming the Integrand

End o References

Low Discrepancy Points Fill Space

11/25

Stopping Rules

Transforming the Integrand

End o References

Lessons from the Trio Identity

$$\underbrace{\int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{i=0} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{i=0} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) = \mathrm{CNF}(f, \{\mathbf{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\mathbf{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

Use low discrepancy⁷ instead of IID sampling for performance gains

⁷J. Dick, P. Kritzer, and F. Pillichshammer (2022). Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics. Springer Cham. DOI: https://doi.org/10.1007/978-3-031-09951-9; J. Dick, F. Kuo, and I. H. Sloan (2013). "High dimensional integration — the Quasi-Monte Carlo way". In: Acta Numer. 22, pp. 133–288. DOI: 10.1017/S0962492913000044; J. Dick and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press.

Stopping Rules

Transforming the Integrand

End o References

Lessons from the Trio Identity

$$\underbrace{\int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{i=0} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{i=0} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) = \mathrm{CNF}(f, \{\mathbf{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\mathbf{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

- Use low discrepancy⁷ instead of IID sampling for performance gains
- **Randomize** when possible so avoid bad $CNF(f, \{x\}_{i=1}^n)$.

⁷J. Dick, P. Kritzer, and F. Pillichshammer (2022). Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics. Springer Cham. DOI: https://doi.org/10.1007/978-3-031-09951-9; J. Dick, F. Kuo, and I. H. Sloan (2013). "High dimensional integration — the Quasi-Monte Carlo way". In: Acta Numer. 22, pp. 133–288. DOI: 10.1017/S0962492913000044; J. Dick and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press. 12/25

Stopping Rules

Transforming the Integrand

End o References

Lessons from the Trio Identity

$$\underbrace{\int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) = \mathrm{CNF}(f, \{\mathbf{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\mathbf{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

Use low discrepancy⁷ instead of IID sampling for performance gains

- Randomize when possible so avoid bad $CNF(f, \{x\}_{i=1}^n)$. Scrambled Sobol' often beats unscrambled Sobol' in order of convergence. Randomizing moves points off the boundaries.
- Error decay rate, $DSC({x}_{i=1}^n)$, limited by the assumptions on f implicit in the choice of VAR
- Deterministic trio identities constrain $-1 \leq CNF(f, \{x\}_{i=1}^n) \leq 1$ but may be pessimistic
- If $\text{CNF}(f, \{x\}_{i=1}^n)$ is consistently small, look for a better choice of VAR and DSC

⁷J. Dick, P. Kritzer, and F. Pillichshammer (2022). Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics. Springer Cham. DOI: https://doi.org/10.1007/978-3-031-09951-9; J. Dick, F. Kuo, and I. H. Sloan (2013). "High dimensional integration — the Quasi-Monte Carlo way". In: Acta Numer. 22, pp. 133–288. DOI: 10.1017/S0962492913000044; J. Dick and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press.

Stopping Rules

Transforming the Integrand

End o References

Lessons from the Trio Identity

$$\underbrace{\int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}}_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) = \mathrm{CNF}(f, \{\mathbf{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\mathbf{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

Use low discrepancy⁷ instead of IID sampling for performance gains

- Randomize when possible so avoid bad CNF(f, {x}ⁿ_{i=1}). Scrambled Sobol' often beats unscrambled Sobol' in order of convergence. Randomizing moves points off the boundaries.
- Error decay rate, $DSC({x}_{i=1}^n)$, limited by the assumptions on f implicit in the choice of VAR
- Deterministic trio identities constrain $-1 \leq CNF(f, \{x\}_{i=1}^n) \leq 1$ but may be pessimistic
- If $\text{CNF}(f, \{x\}_{i=1}^n)$ is consistently small, look for a better choice of VAR and DSC
- Theory explains how well an algorithm works; practice can help sharpen theory

⁷J. Dick, P. Kritzer, and F. Pillichshammer (2022). Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics. Springer Cham. DOI: https://doi.org/10.1007/978-3-031-09951-9; J. Dick, F. Kuo, and I. H. Sloan (2013). "High dimensional integration — the Quasi-Monte Carlo way". In: Acta Numer. 22, pp. 133–288. DOI: 10.1017/S0962492913000044; J. Dick and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press. 12/25

Estimating or Bounding the Error from Simulation Data

$$\underbrace{\int_{[0,1]^d} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{[0,1]^d} - \frac{1}{n} \sum_{i=0}^n f(\boldsymbol{x}_i) = \mathrm{CNF}(f, \{\boldsymbol{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\boldsymbol{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

When to stop sampling because the error is small enough?

- VAR(f) is impractical to bound
- DSC($\{x\}_{i=1}^{n}$) is expensive to calculate

Estimating or Bounding the Error from Simulation Data

$$\underbrace{\int_{[0,1]^d} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{j=0} \int_{i=0}^n f(\boldsymbol{x}_i) = \mathrm{CNF}(f, \{\boldsymbol{x}\}_{i=1}^n) \, \mathrm{DSC}(\{\boldsymbol{x}\}_{i=1}^n) \, \mathrm{VAR}(f)$$

When to stop sampling because the error is small enough?

- VAR(f) is impractical to bound
- $DSC({x}_{i=1}^n)$ is expensive to calculate

Many do replications

$$\left| \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) \right|^2 \approx \frac{\mathsf{fudge}^2}{R} \sum_{r=1}^R \left(\frac{1}{Rn} \sum_{q,i=1}^{R,n} f(\mathbf{x}_i^{(q)}) - \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i^{(r)}) \right)^2$$

where $\{x_i^{(1)}\}_{i=1}^n, \dots, \{x_i^{(R)}\}_{i=1}^n$ are randomizations of a low discrepancy sequence.

^{*}F. J. H. and Ll. A. Jiménez Rugama (2016). "Reliable Adaptive Cubature Using Digital Sequences". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Ed. by R. Cools and D. Nuyens. Vol. 163. Springer Proceedings in Mathematics and Statistics. arXiv:1410.8615 [math.NA]. Springer-Verlag, Berlin, pp. 367–383; Ll. A. Jiménez Rugama and F. J. H. (2016). "Adaptive Multidimensional Integration Based on Rank-1 Lattices". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Ed. by R. Cools and D. Nuyens. Vol. 163. Springer Proceedings in Mathematics and Statistics. arXiv:1411.1966. Springer-Verlag, Berlin, pp. 407–422.

Estimating or Bounding the Error from Simulation Data

Data-driven error bounds based on credible intervals assume that f is an instance of a Gaussian process whose parameters are tuned; valid for f that are not outliers. Computation is fast if covariance kernel matches the sample⁸.

⁸R. Jagadeeswaran and F. J. H. (2019). "Fast Automatic Bayesian Cubature Using Lattice Sampling". In: *Stat. Comput.* 29, pp. 1215–1229. DOI: 10.1007/s11222-019-09895-9; R. Jagadeeswaran and F. J. H. (2022). "Fast Automatic Bayesian Cubature Using Sobol' Sampling". In: *Advances in Modeling and Simulation: Festschrift in Honour of Pierre L'Ecuyer.* Ed. by Z. Botev, A. Keller, C. Lemieux, and B. Tuffin. Springer, Cham, pp. 301–318. DOI: 10.1007/978-3-031-10193-9_15.

$$\begin{array}{l} \operatorname{posterior} \operatorname{mean}_{j} = \frac{\int_{\mathbb{R}^{d}} x_{j} \operatorname{likelihood}(\boldsymbol{x}, \operatorname{data}) \operatorname{prior}(\boldsymbol{x}) \operatorname{d} \boldsymbol{x}}{\int_{\mathbb{R}^{d}} \operatorname{likelihood}(\boldsymbol{x}, \operatorname{data}) \operatorname{prior}(\boldsymbol{x}) \operatorname{d} \boldsymbol{x}}, \qquad j = 1, \ldots, d \\ \\ \operatorname{expected} \operatorname{output}(\boldsymbol{s}) = \mathbb{E}[\operatorname{output}(\boldsymbol{s}, \boldsymbol{X})] = \int_{\mathbb{R}^{d}} \operatorname{output}(\boldsymbol{s}, \boldsymbol{x}) \, \varrho(\boldsymbol{x}) \operatorname{d} \boldsymbol{x}, \qquad \boldsymbol{s} \in \Omega \\ \\ \operatorname{sensitivity} \operatorname{index}_{j} = \int_{[0, 1]^{2^{d}}} f(\boldsymbol{x}) [f(x_{j}, \boldsymbol{z}_{-j}) - f(\boldsymbol{z})] \operatorname{d} \boldsymbol{x} \operatorname{d} \boldsymbol{z}, \qquad j = 1, \ldots, d \end{array}$$

Stopping criteria have been extended to these cases⁹

PF. J. H., Ll. A. Jiménez Rugama, and D. Li (2018). "Adaptive Quasi-Monte Carlo Methods for Cubature". In: Contemporary Computational Mathematics — a celebration of the 80th birthday of Ian Sloan. Ed. by J. Dick, F. Y. Kuo, and H. Woźniakowski. Springer-Verlag, pp. 597–619. DOI: 10.1007/978-3-319-72456-0; A. G. Sorokin and R. Jagadeeswaran (2023+). "Monte Carlo for Vector Functions of Integrals". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022. Ed. by A. Hinrichs, P. Kritzer, and F. Pillichshammer. Springer Proceedings in Mathematics and Statistics. submitted for publication. Springer, Cham.

Bayesian Logistic Regression for Cancer Survival Data

logit(probability of 5 year survival) = $\beta_0 + \beta_1$ patient age + β_2 operation year + β_3 # positive axillary nodes

Logistic regression to estimate β_i from 306 data¹⁰ with error criterion of

absolute error ≤ 0.05 & relative error ≤ 0.5

method	Ba	β.	Ba	Ba	all true	true pos	true pos
method	ρ_0	ρ_1	ρ_2	ρ_3	all	all pos	true pos + false neg
Bayesian & qmcpy	0.0080	-0.0041	0.1299	-0.1569	74%	74%	100%
elastic net	0.0020	-0.0120	0.0342	-0.11478	74%	77%	93%

¹⁰SJ Haberman (1976). Generalized residuals for log-linear models, proceedings of the 9th International Biometrics Conference.

Stopping Rules

Transforming the Integrand

End o References

Lessons from Data-Based Error Bounds

$$\left| \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{n} \sum_{i=0}^n f(\mathbf{x}_i) \right| \le \text{some function of } \{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^n$$

- Theoretical bounds are impractical
- Every data-based error bound can be fooled
- There are better choices than random replications

The original problem may look like

 $\int_\Omega g(t)\,\mathrm{d}t$ but needs to become $=\int_{[0,1]^d}f(\mathbf{x})\,\mathrm{d}\mathbf{x}$

Importance Sampling and Control Variates

To facilitate and expedite its solution, one may

- perform a variable transformation, equivalent to importance sampling¹¹, and/or
- subtract a trend (control variate)¹² with integral zero

$$\begin{split} \int_{\Omega} g(t) \, \mathrm{d}t &= \int_{[0,1]^d} g(\Psi(\mathbf{x})) \left| \frac{\partial \Psi(\mathbf{x})}{\partial \mathbf{x}} \right| \, \mathrm{d}\mathbf{x}, \qquad \mathbf{T} = \Psi(\mathbf{X}) \sim \left[\left| \frac{\partial \Psi(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \Psi^{-1}(t)} \right]^{-1} \\ &= \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

1

¹¹A. B. Owen and Y. Zhou (2000). "Safe and Effective Importance Sampling". In: *J. Amer. Statist. Assoc.* 95, pp. 135–143. ¹²F. J. H., C. Lemieux, and A. B. Owen (2005). "Control Variates for Quasi-Monte Carlo". In: *Statist. Sci.* 20, pp. 1–31. doi: 10.1214/088342304000000468.

Importance Sampling and Control Variates

To facilitate and expedite its solution, one may

- perform a variable transformation, equivalent to importance sampling¹¹, and/or
- subtract a trend (control variate)¹² with integral zero

$$\begin{split} \int_{\Omega} g(t) \, \mathrm{d}t &\underset{t=\Psi(\mathbf{x})}{=} \int_{[0,1]^d} g(\Psi(\mathbf{x})) \left| \frac{\partial \Psi(\mathbf{x})}{\partial \mathbf{x}} \right| \, \mathrm{d}\mathbf{x}, \qquad \mathbf{T} = \Psi(\mathbf{X}) \sim \left[\left| \frac{\partial \Psi(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \Psi^{-1}(t)} \right]^{-1} \\ &= \int_{[0,1]^d} \left[g(\Psi(\mathbf{x})) \left| \frac{\partial \Psi(\mathbf{x})}{\partial \mathbf{x}} \right| - h(\mathbf{x}) \right] \, \mathrm{d}\mathbf{x} = \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x} \end{split}$$

to make VAR(f) smaller. Choosing Ψ and *h* is more art than science.

^{III}A. B. Owen and Y. Zhou (2000). "Safe and Effective Importance Sampling". In: *J. Amer. Statist. Assoc.* 95, pp. 135–143.
^{III}F. J. H., C. Lemieux, and A. B. Owen (2005). "Control Variates for Quasi-Monte Carlo". In: *Statist. Sci.* 20, pp. 1–31. DOI: 10.1214/088342304000000468.

Asian Option Pricing

- Option payoff is function of a stock price path modeled by a stochastic differential equation
- Option price is expected value of payoff
- True answer is the limit as # of time steps, d, goes to ∞
- Ψ based on the eigenvector-eigenvalue decomposition of the covariance matrix is more efficient than the Cholesky decomposition

Large or infinite d when discretizing a continuous stochastic process. Write as

where $d_1 < \cdots < d_L$ and $n_1 > \cdots > n_L$. Evaluation of $f_d(\mathbf{x}_d)$ is typically $\mathcal{O}(d)$.

¹³M. Giles (2013). "Multilevel Monte Carlo methods". In: *Monte Carlo and Quasi-Monte Carlo Methods 2012*. Ed. by J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan. Vol. 65. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin. doi: 10.1007/978-3-642-41095-6. 19/25

Stopping Rules

Transforming the Integrand

End

References

Message

Problems in Bayesian inference, uncertainty quantification, quantitative finance, (high energy) physics, etc. require numerically evaluating

$$\underbrace{\mathbb{E}[f(\boldsymbol{X})]}_{\text{expectation}} = \underbrace{\int_{\Omega} f(\boldsymbol{x}) \, \varrho(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}}_{\text{integral}}, \qquad \boldsymbol{X} \sim \varrho$$

There is value in

- Iow discrepancy sampling, aka quasi-Monte Carlo methods
- data-driven error bounds
- flattening and reducing the effective dimension of the integrand
- quality quasi-Monte Carlo software like qmcpy
- physicists and quasi-Monte Carlo theorists collaborating more

Slides at speakerdeck.com/fjhickernell/argonne2023maytalk

Jupyter notebook with computations and figures (1990). Visit us at qmcpy.org

- H., F. J. (1998). "A Generalized Discrepancy and Quadrature Error Bound". In: Math. Comp. 67, pp. 299–322. DOI: 10.1090/S0025-5718-98-00894-1.
- (2018). "The Trio Identity for Quasi-Monte Carlo Error Analysis". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August 2016. Ed. by P. Glynn and A. Owen. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin, pp. 3–27. DOI: 10.1007/978-3-319-91436-7.
- H., F. J. and Ll. A. Jiménez Rugama (2016). "Reliable Adaptive Cubature Using Digital Sequences". In: *Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014*. Ed. by R. Cools and D. Nuyens. Vol. 163. Springer Proceedings in Mathematics and Statistics. arXiv:1410.8615 [math.NA]. Springer-Verlag, Berlin, pp. 367–383.
- H., F. J., LI. A. Jiménez Rugama, and D. Li (2018). "Adaptive Quasi-Monte Carlo Methods for Cubature". In: Contemporary Computational Mathematics — a celebration of the 80th birthday of Ian Sloan. Ed. by J. Dick, F. Y. Kuo, and H. Woźniakowski. Springer-Verlag, pp. 597–619. DOI: 10.1007/978-3-319-72456-0.

References II

- H., F. J., C. Lemieux, and A. B. Owen (2005). "Control Variates for Quasi-Monte Carlo". In: *Statist. Sci.* 20, pp. 1–31. DOI: 10.1214/088342304000000468.
- Blaszkiewicz, M. R. (Feb. 2022). "Methods to optimize rare-event Monte Carlo reliability simulations for Large Hadron Collider Protection Systems". MA thesis. University of Amsterdam. URL: https://cds.cern.ch/record/2808520.
- Brass, H. and K. Petras (2011). Quadrature theory: the theory of numerical integration on a compact interval. Rhode Island: American Mathematical Society.
- Chen, S., J. Dick, and A. B. Owen (2011). "Consistency of Markov Chain Quasi-Monte Carlo on Continuous State Spaces". In: Ann. Stat. 9, pp. 673–701.
- Choi, S.-C. T. et al. (2023). QMCPy: A quasi-Monte Carlo Python Library (versions 1–1.4). DOI: 10.5281/zenodo.3964489. URL: https://qmcsoftware.github.io/QMCSoftware/.
- Cools, R. and D. Nuyens, eds. (2016). Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014. Vol. 163. Springer Proceedings in Mathematics and Statistics. Springer-Verlag, Berlin.
- Courtoy, A. et al. (2023). "Parton distributions need representative sampling". In: *Phys. Rev. D* 107.034008. URL: https://journals.aps.org/prd/pdf/10.1103/PhysRevD.107.034008.

- Dick, J., P. Kritzer, and F. Pillichshammer (2022). Lattice Rules: Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics. Springer Cham. DOI: https://doi.org/10.1007/978-3-031-09951-9.
- Dick, J., F. Kuo, and I. H. Sloan (2013). "High dimensional integration the Quasi-Monte Carlo way". In: Acta Numer. 22, pp. 133–288. DOI: 10.1017/S09624929130000044.
- Dick, J. and F. Pillichshammer (2010). Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press.
- Everett, D. et al. (May 2021). "Multisystem Bayesian constraints on the transport coefficients of QCD matter". In: *Phys. Rev. C* 103.5. DOI: 10.1103/physrevc.103.054904.
- Giles, M. (2013). "Multilevel Monte Carlo methods". In: Monte Carlo and Quasi-Monte Carlo Methods 2012. Ed. by J. Dick et al. Vol. 65. Springer Proceedings in Mathematics and Statistics.
 Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-41095-6.
- Haberman, SJ (1976). Generalized residuals for log-linear models, proceedings of the 9th International Biometrics Conference.
- Jagadeeswaran, R. and F. J. H. (2019). "Fast Automatic Bayesian Cubature Using Lattice Sampling". In: *Stat. Comput.* 29, pp. 1215–1229. DOI: 10.1007/s11222-019-09895-9.

- Jagadeeswaran, R. and F. J. H. (2022). "Fast Automatic Bayesian Cubature Using Sobol' Sampling". In: Advances in Modeling and Simulation: Festschrift in Honour of Pierre L'Ecuyer. Ed. by Z. Botev et al. Springer, Cham, pp. 301–318. DOI: 10.1007/978-3-031-10193-9_15.
- Jiménez Rugama, LI. A. and F. J. H. (2016). "Adaptive Multidimensional Integration Based on Rank-1 Lattices". In: *Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014*. Ed. by R. Cools and D. Nuyens. Vol. 163. Springer Proceedings in Mathematics and Statistics. arXiv:1411.1966. Springer-Verlag, Berlin, pp. 407–422.
- Liyanage, D. et al. (Mar. 2022). "Efficient emulation of relativistic heavy ion collisions with transfer learning". In: *Phys. Rev. C* 105.3. DOI: 10.1103/physrevc.105.034910.
- Meng, X. (2018). "Statistical Paradises and Paradoxes in Big Data (I): Law of Lage Popluations, Big Data Paradox, and 2016 US Presidential Election". In: Ann. Appl. Stat. 12, pp. 685–726.
- Owen, A. B. and Y. Zhou (2000). "Safe and Effective Importance Sampling". In: J. Amer. Statist. Assoc. 95, pp. 135–143.
- Owen, Art B. and Seth D. Tribble (2005). "A quasi-Monte Carlo Metropolis algorithm". In: *Proc. Natl. Acad. Sci.* 102, pp. 8844–8849.

- Parno, M. and L. Seelinger (2022). Uncertainty propagation of material properties of a cantilevered beam. URL: https://um-bridge-benchmarks.readthedocs.io/en/docs/forwardbenchmarks/muq-beam-propagation.html.
 - Sorokin, A. G. and R. Jagadeeswaran (2023+). "Monte Carlo for Vector Functions of Integrals". In: Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Linz, Austria, July 2022. Ed. by A. Hinrichs, P. Kritzer, and F. Pillichshammer. Springer Proceedings in Mathematics and Statistics. submitted for publication. Springer, Cham.