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Uncertainty quantification for parton distributions

Parton Distribution Functions (PDFs) encapsulate probabilities for finding quarks, antiquarks,
and gluons in hadrons participating in high-energy collisions. A PDF is a function of a variable

x € [0,1], and the truth expression of that function is unknown from theory. The shape of
PDFs is hence extracted from data.

| will discuss uncertainty quantification for PDFs mainly based on

“Parton distributions need representative sampling”
[Phys.Rev.D 107] arXiv version more complete

CTEQ-TEA collaboration

China: S. Dulat, J. Gao, T.-J. Hou, |. Sitiwaldi, M. Yan, and collaborators
Mexico: A. Courtoy

USA: T.J. Hobbs, M. Guzzi, J. Huston, P. Nadolsky, C. Schmidt, D. Stump, K. Xie, C.-P. Yuan

Application of concept of epistemic PDF uncertainties —Fantomas team
Mexico: A. Courtoy, D.M. Ponce-Chavez

USA: L. Kotz, P. Nadolsky, F. Olness

based on [AC & Nadolsky, Phys.Rev.D 103].
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Challenges in global analyses of PDFs

Keynote talks at DIS’23 (April 23)

Most likely look for “new interactions” | #
Daniel de Florian: Small deviations from SM : PRECISION &
need for precision EFT description / BSM model L

S8 5 55

Precision is the name of the game for the next decades (Higgs sector)

- Experiments WELCOME the ongoing
inclusion of theoretical uncertainties
in PDF fits.

Marteen Boonekamp:
- Still, very difficult to understand the

need for accuracy
significance of differences between

results obtained using different PDF sets
* Very interesting discussion in WG1
* better uncertainty decomposition required

* Mw is such an active field, all of a sudden!

* Uncertainty propagation for this measurement currently almost broken by the
PDFs — we should improve, and the discussions this week were extremely
helpful



The shape of parton distributions

Parton distributions are functions of the momentum

fraction x, they are extracted from data that are
sensitive to specific PDF flavors, etc.

=> finding the shape in x is the goal of PDF analyses

Uncertainty propagates from data and methodology to
the PDF determination.
There are two classes of them,
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The shape of parton distributions

Parton distributions are functions of the momentum

fraction x, they are extracted from data that are
sensitive to specific PDF flavors, etc.

=> finding the shape in x is the goal of PDF analyses

Uncertainty propagates from data and methodology to
the PDF determination.
There are two classes of them,

epistemic vs. aleatory uncertainties

Statistical uncertainty
propagated from experiments

_ — irreducible
Uncertainty due to lack

of knowledge
—bias (may be reduced)
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Criteria for PDF uncertainties

Recent advancements in the determination of unpolarized PDFs:
CT18, MSHT20, NNPDF4.0, ATLASpdf21 as well as PDF4LHC21.

PDF4LHC21:

benchmarking and combination of the leader PDF sets, CT, MSHT & NNPDF, for the run Il of the LHC.
[Ball, et al, J.Phys.G 49 (2022)]

ol LHC 14 TeV, 2 1 What is the origin of the differences in size of
_ ] . . . e
[ brecision PDFs correlation ellipses among various fits"
600 (Snowmass 21 WP) . -
- [2203.13923] PDF4LHC21 excercise highlights the role of
= 98[ methodology. Monte Carlo-based analysis (NNPDF)
% '_ gives smaller uncertainties.
s 501 XSHT20 | e
~#NNPDF3.1 0147 — MSHT20(red) |/:
54 < ABMP16 ] ~o 0.12} -~ CT18(red) -
52F ¢ PDF4LHCI15 - 0,08 I
_ # PDFALHC21 | =S ]
50- # NNPDF4.0 — ch 0.06 : -
e s 0.04F .
750 800 850 900 0.00 )
oz [pb] 0.00

| el el TR T B
10! 10° 10°
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Hessian and MC frameworks

L e

Hessian methodology finds the global minimum Monte-Carlo methodology (neural network, Al/
and explores the parameter space. ML) replicates fluctuated data, then optimizes

PDFs are represented by functional forms ; a set of each replica (up to training).

Hessian PDFs depend on ~30 params. A set of MC PDFs depends on up to several hundreds

of latent parameters, as well as hyperparameters
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Hessian and MC frameworks

Monte-Carlo methodology (neural network, Al/
ML) replicates fluctuated data, then optimizes
each replica (up to training).

A set of MC PDFs depends on up to several hundreds
of latent parameters, as well as hyperparameters

Hessian methodology finds the global minimum

and explores the parameter space.
PDFs are represented by functional forms ; a set of
Hessian PDFs depend on ~30 params.

g at 10.0 GeV - NNPDF3.1 NNLO, aS(M%)=O.118
1.100 7, ;

Hessian and Monte Carlo representations of 1.075 ]
given PDF sets are shown to be compatible 10501
— conversions exist in both ways

1.025 A1 .

1.000

Ratio to xg(x)

[Gao & Nadolsky, JHEP 07 (2014) 035] 0.975 - >
[Carrazza et al.,Eur.Phys.J.C 75 (2015) 8, 369] 0.950-
0.925 4 4 [ Hessian 100 eigenvectors \1‘
_ _ 0.900 +— ,’l rr—— ,.,...._:meca'j?(.l.c.’.)._z e
Hence, a chi-square paraboloid can also be 10 10 e e 10 10

defined for Monte Carlo-based analyses.

A. Courtoy—IFUNAM

Representative MC for PDFs

[Lambri thesis, U. Milano]
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Equivalence of Hessian and MC frameworks

In multivariate analyses, sampling occurs at various levels — parameter space, bootstrap but
also priors, ... In large-dimensional problems, sampling is complex.

The conversion to Hessian is convenient to explore
the efficiency of the Monte Carlo method in terms of

)(2 behavior in parameter space.

The space of N,,, is reduced to a 50-dimensional

space, referred to by 50 eigenvector (EV) directions.
The shape of each projected )(2 IS a parabola.
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Equivalence of Hessian and MC frameworks

In multivariate analyses, sampling occurs at various levels — parameter space, bootstrap but
also priors, ... In large-dimensional problems, sampling is complex.

The conversion to Hessian is convenient to explore
the efficiency of the Monte Carlo method in terms of

)(2 behavior in parameter space.

The space of N,,, is reduced to a 50-dimensional

space, referred to by 50 eigenvector (EV) directions.
The shape of each projected )(2 IS a parabola.

We can reconstruct EV directions for the neural network PDF collaboration
(NNPDF4.0) that provide a Hessian set, in blue. There are second crossing points
withAy? = 0, for all 50 EV directions.

This indicates a larger paraboloid than the red curve provided by NNPDF4.0.
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Key role played by methodology

The depth and position of the paraboloid obtained by the MC-to-Hessian converted PDFs suggest
an incomplete span of the space of solutions.

Outside of HEP/NP, there is significant interest in statistical problems that are similar to the assessment
of uncertainties for PDF.

These studies introduce a fundamental distinction between the fitting uncertainty and
sampling uncertainty, often overlooked in the PDF fits.

Article

Unrepresentative big surveys significantly
overestimated US vaccine uptake

Nature v. 600 (2021) 695

hitpa: idoi.crp/10.1028/241586-021-04198-4  Valerie C. Bradley', Shiro Kuriwaki™*, Michael ksakov’, Dino Sejdinovic’, Xiso-Li Meng® &
; Seth Flaxman™™
Received: 18 June 2020

SCIENCE ADVANCES | RESEARCH ARTICLE

MATHEMATICS

Models with higher effective dimensions tend
to produce more uncertain estimates

Arnald Puy'??#, Pierfrancesco Beneventano®, Simon A. Levin?, Samuele Lo Piano®,
Tommaso Portaluri®, Andrea Saltelli*’

The Big Data Paradox in Clinical Practice

Pavlos Msaouel

To cite this article: Pavlos Msaouel (2022) The Big Data Paradox in Clinical Practice, Cancer

Investigation, 40:7, 567-576, DOI: 10.1080/07357907.2022.2084621
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On uncertainty quantification

Theoretical Experimental

Parametrization Methodology

In all four categories of uncertainties, we can further distinguish

PDF fitting accuracy from PDF sampling accuracy.

Goodness-of-fit applies to an <«— — Sampling accuracy applies either
individual best fit. to the tolerance or the number of
[Kovarik et al, Rev.Mod.Phys. 92 (2020)] error sets in a PDF ensemble.

L) This talk.

A. Courtoy—IFUNAM Representative MC for PDFs UQ meeting 23




Sampling bias and big-data paradox

! D
2 B — Irreducible error  © Confidence Confidence
== Bias intervals intervals
; i Va\N
The truth Our model

Large sample size
of the truth

Pavlos Msaouel (2022)
Cancer Investigation, 40:7, 567-576

With an increasing size of sample n — ©0, under a set of hypotheses, it is usually expected

—1
that the deviation on an observable decreases like (\/Z ) .

That’s the law of large numbers.

What uncertainties keep us from including the truth, ,u?‘

The law of large numbers disregards the quality of the sampling, ~ gi;esd”db'e iCIEY
Xiao-Li Meng
The Annals of Applied Statistics
Vol. 12 (2018), p. 685
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Xiao-Li Meng

Trlo |dent|ty The Annals of Applied Statistics

Vol. 12 (2018), p. 685

u — [ = (data+sampling defect) X (measure discrepancy) X (inherent problem difficulty)

l l

-1
depends on the sampling algorithm can tend to <\/E> for random sampling

Confidence
intervals <

== |rreducible error

— Bias = statistical model, quality of data,...

Large sample size

Q
.

The truth

For a sample of n items from the population of size N, we
can consider an array built by the random spanning of the

binary responses of the N — n (0) and n (1) items, so that

Our model
of the truth

| N
u — i = Corr[observable, sampling quality] X 1 / — — 1 X o(observable)
n
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Sampling bias in PDF global analyses—|

|How do we know the “data+sampling defect=confounding correlation” of our analysis?

Methodological choices are reflected in the epistemic
uncertainty, including biases from sampling.

xperi- BLEELY

ment Precision
PDFs,
specialized

Priors, including choice of functional form or Bayesian
priors, influence the sampling algorithm.

New collider and
fixed-target

Representative sampling accounts for the
confounding correlation, and can ultimately be used

Hessian, Monte-Carlo
. . . . techniques, neural
to optimize its contribution, e.g. through the study of R S T
largest effective dimensions. e

= dimensionality reduction (effective dimensions) vs. phase space reduction (priors)
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Sampling bias in PDF global analyses—|

|How do we know the “data+sampling defect=confounding correlation” of our analysis?

Hessian-based analysis:
objective function includes penalties, establishing the tolerance criteria.

Size of uncertainties reflect a series of confounding sources —selection of fitted experiments,
treatment of correlated systematic errors, functional forms of PDFs, ...

2.0 pre=r e ———
I'.' | 1 2(x.Q) at Q =1.3 GeV 68%C.L. |

\\ CTISNNLO I

i CTI8par MU

Verification that proper spanning of parameter space
is compatible with total uncertainties (a posteriori).
>300 functional forms are tested in CT18.

PDF Ratio to CTISNNLO

Dimensions of the problem given by the number
of parameters=eigenvector (EV) directions.

Hou et al, Phys.Rev.D 103 (2021)
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Sampling bias in PDF global analyses—II

|How do we know the “data+sampling defect=confounding correlation” of our analysis?

Monte Carlo-based analysis:
optimization implies selection of hyperparameters (see NNPDF)

There are still many choices associated with the optimization:

- Number and width of the layers

- Activation functions and initialization

- Optimization algorithm (and associated parameters
- Training length, stopping condition

- Physics consstraints (positivity, integrability)
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Do we understand sampling for QCD global analyses?

Sampling of multidimensional spaces (d > 20) is exponentially inefficient and may require n > 2¢
replicas to obtain a convergent expectation value.

In general, an intractable problem.

[Hickernell, MCQMC 2016, 1702.01487]
[Sloan, Wo'zniakowski, 1997]

1. Justification for tolerance criteria for Hessian-based PDF fits

2. How is sampling achieved in Monte Carlo-based PDF fits?

Importance sampling, as defined by NNPDF

e =bootstrap/resampling of random fluctuations in data f —NNPDF4.0 MC 100 replicas
. . . : 8650F —NNPDF4.0 MC 1000 replicas
» expectations are then unweighted averages over replica fits F  NNPDF4.0 Hessian .

8600 :
-3 C ‘
B
. 8550F
=L '
Such sampling does not include sampling over ° 8500k -
hyperparameters and priors. :

LHC 14 TeV, 1o

815 820 825 830 835 840 845
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Observable-oriented effective dimensions

To efficiently span the 50-dimensional Hessian space, we identify the largest dimensions
affecting chosen pairs of cross-sections.

Based on the most relevant EV directions for given observables, we explore the directions in )(2
space with )(2 < )(g and, in turn, they sample the space of observables with more plausible
solutions. That’s the the hopscotch algorithm.

‘ )(2 space‘ Observable (04, 6,,) scatter plot
EVM @ i
0 | | | |
70| EV 2
'EV5
EV 4
PR Gl S
=l ............ 770
EVN
=6 -2 -2 0 2 4 6 8 10 . 1 [ .
4 46.5 47.0 47 48.0 48.5
Oy(pb]

° represent ;(2 for bootstrapped distribution
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

go0—™ ™ ———m/m™8™8MmMmMm ———————————————————————
The green and blue ellipses (constructed using - Ax?<0 (approximate region)
a convex hull method) are app_roxmez\te region 7951 Ax2,,<0 (approximate region) =Y
containing all found replicas with Ay~ < 0. |
o _ 790+
They have the statistical meaning related to a |
likelihood-ratio test. .
IS
780j
775;
The green and blue areas are larger than the 770l
nominal NNPDF4.0 uncertainty (red ellipse). - NNPDF4.0 (nominal) T ATLAS 1370V
765V ‘6‘8% QL ““““““““““““““
46.0 46.5 47.0 47.5 48.0 48.5
Ih[pb]
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Representative sampling — the hopscotch algorithm

PDF Ratio to CTISNNLO

[AC, Huston, Nadolsky, Xie, Yan & Yuan, 2205.10444, PRD107]

The hopscotch algorithm more densely samples the effective dimensions relevant for the
chosen observables. The resulting uncertainty is larger than the nominal one, shown here

for (o4, 0,).

800+
Monte Carlo uncertainties from sampling bias found !
through our dimensional reduction method play a
similar role as sampling of parameter space in 780F
Hessian uncertainties. ’
o
Z
o 760
2. prrprrre—— ' — T
10 2(x.Q) at Q =1.3 GeV 68%C.L. I CT18 ——
AR\ CTISNNLO I CT18Z -----
15 ,_' [ CTI18par IR >
740+ NNPDF4.0:
Nominal
LOE AxZ<0
AX§Xp<0 - —
2 — -— -
05 7207 I | I I I I | I I I I | Axexp< 60 | I
45 46 47 48
0.0 anlpb]
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—pistemic uncertainties in global analyses

O '|||" |"', ||‘.l.'."
= ki
CT18 PDF uncertainty: Z 1o\
Hessian-based methodology. -
. . . O
Inclusive of sampling bias/lack of knowledge. Q
2
0:2
% 0.5
A
0.0
795
Monte Carlo-based PDF uncertainty:
Higher-dimensional space. 790¢
The “hopscotch” algorithm gives a lower bound :
on the bias due to lack of knowledge. 785
g |
® 780
775
770;
765.
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] .O == __ __—-:..‘j_- —-_

2(x,Q) at Q =1.3 GeV 68%C.L.
CT18NNLO
CTI18par

[ A)2c[-35.0)
L A2 .c [-35.0]

[ NNPDF4.0 (nominal
V(100 rep)

)vvr;

ATLAS 13TeV

l '47.0‘ l
Oulpb]

475

280

485



—pistemic uncertainties: Fantomas

Epistemic uncertainty:

On-the-fly generation of functional forms
for which the parameters of interest reflect the
pulls on few specific points.

Aleatory uncertainty:

Here illustrated as a bootstrapped generation of
replicas for a given functional form (probability
distribution on the bundle of replicas).

[Kotz, Ponce-Chavez, AC, Nadolsky, Olness, very soon]

A. Courtoy—IFUNAM
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® Pseudodata |
—— Truth 7
— — Metamorph ]
N, = 4 varying position & a,
Neurves = 50

® Pseudodata :

— Truth |
Metamorph -
— === Average |

N = 4, ay = 0.45, Nigp, = 50

0.0

| | | |
0.2
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Hypothesis testing and parton distributions

Representative sampling

Curse of Big-data
dimensionality paradox

. \ Likelihood
Acceptable functions : | ratios

Tests of PDFs

Epistemic
Post-fit PDF

Bias-variance -
separation P D F validations

uncertainty
Precision PDF applications
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Quantification of the epistemic uncertainty

The hopscotch algorithm does not necessarily find the global minimum.

We currently cannot quantify the epistemic uncertainty, especially in the study case of the hopscotch.
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Quantification of the epistemic uncertainty

The hopscotch algorithm does not necessarily find the global minimum.

We currently cannot quantify the epistemic uncertainty, especially in the study case of the hopscotch.

=> Scientific case for providing full statistical models for experimental data ; would affect correlation
matrix for nuisance parameters.

“Publishing statistical models: Getting the most out of particle physics experiments”
[Cranmer et al, SciPost Phys.12, 037]

=> Case for clearly defining statistical models of global analyses: properly identify contributions to
counfounding correlation for both MC and Hessian frameworks, role of priors.

Efforts that starts with our hopscotch study, will be expanded for CT2X release.

Can be generalized to broader PDF applications.

= Epistemic uncertainty can only be optimized if it is understood —though irreducible in certain cases.
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Likelihood and sampling — |

|What is the adequate objective function for PDF analyses?

P(a|D) o« P(D|a) P(a)
@exp(_XEug/Q) X exp(—XQ/Q) eXp(_XIQ)rior/z)

2 2 2
:>Xaug = X"+ Xprior
[Lepage et al., NPB Proc.Suppl.106(2002) 12-20]

Parameters: parameters of interest @ and nuisance parameters.

Likelihood: “augmented” likelihood contains constraints/priors/penalties as well as the minimal

likelihood. Identify priors on a.

The Bayesian statistics expression may require integration over a large space: needs for improved MC
integrations — see F. Hickernell’s talk.

The possibility of using MC integration for expectation values was pointed out long ago, but the approach
was deemed computationally inefficient.
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Likelihood and sampling — |l

|On which basis are PDFs accepted or rejected?

Likelihood ratios:
two replicas can be ordered according to their relative likelihood or relative prior.

P(,ID) _ POIT) _ P(Ty)
P(T,D) ~ POIT) ~ P(Ty)

= Tposterior = Tikelihood = Tprior

aleatory epistemic + aleatory probabilities

Prior: replica can be discarded based on P(T,) < P(T) even for 1y;1..1n00d ~ 1

PD|T
Likelihood: replica can be accepted based on 7y;.1ih00q = PED : TZ; ~ 1 when P(T,) ~ P(T))
I
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Key role played by priors

|Priors have been identified to reduce the phase space

Constraints fit exploits the benefits of well-controlled priors

“Constrained curve fitting,” [Lepage et al., Nucl.Phys.B Proc.Suppl.106(2002) 12-20] — lattice oriented

=> similarly for polarized PDF analysis [Benel et al, EPJC]

Solutions may be prejudiced by strong priors

Some publications show how strong priors have affected results (that has led to important claims)

= Proton structure: “Parton distributions need representative sampling”+ communication with NNPDF
[us]
=> Neutrino physics: “Neutrino mass and mass ordering: no conclusive evidence for normal ordering”

[Stefano Gariazzo et al JCAP10(2022)010]
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Conclusions

A new avenue to the explain the differences among UQ from various PDF fitting groups is
proposed through the study of the sampling uncertainties — a complementing source to the
fitting uncertainty.

Highlights on the sampling uncertainties:

1. Epistemic uncertainty plays an important role in precise PDF determinations.

2. Concept of effective large dimensions. Difficult to sample the full parameter space with many
parameters without biases. A hopscotch scan intelligently reduces dimensionality of the
relevant PDF parameter space for an observable under consideration.

3. Define sources of counfounding correlations from the likelihood/statistical model. We learn
and then aim to optimize it (where irreducible).

4. MC sampling for marginalization, more during this workshop

Moving toward epistemic PDF uncertainty!
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs
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A hopscotch scan of LHC cross sections for NNPDF4 O PDFs
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 3

Guidance from specific cross sections:
we identify 4-7 EV directions that give the

—

largest displacements for a given A)(z per pair.

Large EV directions are shared among various

pairs of cross sections.

Construct the convex hulls for

Ay? =+10,0, — 10, — 20 w.r.t. NNPDF4.0
replica 0 (red).
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 4
For each pair of cross sections, we generate 300

replicas by sampling uniformly along the “large”
EV directions.

Sort the n,,,;,, X 300 resulting replicas according

to their Ay? w.r.t. to NN4O replica O.

Hopscotch replicas are linear combinations of
NNPDF4.0 Hessian EV.

Each of the solutions is an acceptable PDF set
from the NNPDF4.0 fit.

High-density MC sampling of a span of a few
EV directions that drive the specific PDF
uncertainty.
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Likelihoods in PDF analyses

2
Vo [ Ta) =D+ X% B AP |
Fain=y e | LY e
O:
=1 ! a=1

Simple algebraic eq. )(2(a,/16x1’) — () = |

dﬂaq7
N 2
s ( Tha) - D+ T B | &
Ha)=) - + )P @)
=1 [ a=1

a is the vector of parameters of interest

p is the correlation matrix for nuisance parameters
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Figures of merit in the NNPDF4.0 analysis |

1. x* with respect to the central experimental values
Npt

X% =) (T = D) (cov™1);;(T; = D))
L,J

EM: S = Bl X
0 3 S5 Vi Ay

a=1

D;, T;, s; are the central data, theory, uncorrelated error
Bi o« is the correlation matrix for N, nuisance parameters.

Experiments publish g; ,. To reconstruct g; ,, we need to decide on the
normalizations X;.

NNPDF4.0 use:

a. X;=D; . “experimental scheme”; can result in a bias
b. X; = fixed T; : "ty scheme”; can result in a (different) bias

2022-10-20 P. Nadolsky, LPC Physics Forum



Figures of merit in the NNPDF4.0 analysis Il

N : ]
(COV)ij = 33533 S Z Bi.aPj.a, Vi, = (Tz',a‘\i-
a=1
NNPDF4.0 use:
a X;=D; . experimental scheme; can result in a bias

b. X; = fixed T; : ty scheme; can result in a (different) bias

The conventions are neither complete nor unique. Ambiguity affects all groups.
See Appendix in 1211.5142.

2. NNPDF4.0 trains MC replicas with y* for fluctuated D;, t, scheme, and

replica selection (prior) conditions:

fluctuated

Cost=yxz, ( ) + Xprior

3. NNPDF4.0 quotes the final unfluctuated y? in the “exp” scheme.

Experimental scheme: toz sc}l:,em_e :1 233
Xgot/Npt = 1.160. th/ T |

x%(exp) — x*(t,) = —340 for 4618 data points

2022-10-20 P. Nadolsky, LPC Physics Forum



The hopscotch scan counterbalances
the bias of the nominal replica ensemble

6.2 Creating a less biased sub-sample

The basic 1dea 1s to use such partial information about the selection bias to design a biased sub-
sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples
have a high likelihood to be less biased than the original sample from our target population. That 1s, we
create a sub-sampling indicator §,, such that with high likelihood, the correlation between S,R, and G,
1s reduced, compared to the original p, ., to such a degree that 1t will compensate for the loss of sample
size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, n
its non-technical meaning, because without full information on the response/recording mechanism, we can
never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with

judicious execution, we can reduce the likelihood of making serious mistakes.

X.-L. Meng, Survey Methodblogy, Catalogue 12-001-X, vol. 48 (2022), #2

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 35
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Priors and

statistical estimate of an arbitrary function of the
parameters using

Uy =87 [ )ty (15)
where
B = /(\_"Emg(“’)/2 d"p, (16)

and the variance is (T? = (f?) — (f)?, as usual.

In practice these integrals are quite difficult to
evaluate for all but the simplest of fits. This is
because P(p|G) is typically very sharply peaked
about its maximum. For smaller problems, adap-
tive Monte Carlo integrators, such as vegas, are
effective. For larger problems Monte Carlo sim-
ulation techniques, such as the Metropolis or hy-
brid Monte Carlo methods, can be effective. Still
the cost of evaluating the integrals is often pro-
hibitive, particularly when there are lots of poorly
constrained parameters (which lead to long, nar-
row, high ridges in the probability distribution).
Consequently efficient approximations are useful.

“Constrained curve fitting,” [Lepage et al., Nucl.Phys.B

Proc.Suppl.106(2002) 12]

2023-05-18
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optimal sampling parameters

The distribution obtained from this modified
bootstrap algorithm is not precisely the Bayes
distribution P(p|G). It has additional factors

such as y/det g;; where

_o IG(t; p) OG(t'; p)
1 § : 2
I — 0 ’ 3 12)
9ij B dp; é)/)j (19)

tit”

is a metric induced on p space [ These factors
become constants for sufficiently high statistics
anfd so make no difference in that limit. This
particular factor is interesting, however, because
it makes the measure in p space invariant under
reparameterizations. This suggests that

— 2 e
P'(p|G) x y/det g;; e Xaug/? (20)
might be a better choice for our Bayesian prob-
ability.

The possibility of using MC integration for expectation values
was pointed out long ago, but the approach was deemed
computationally inefficient.

Quasi-MC integration and dimensionality reduction may help,
as well as parameter transformations to sample using a non-
informative (e.g., Jeffrey’s) prior

Sampling bias PDF4LHC Meeting 2022




