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Monte Carlo Methods and Lattice QCD



Outline

• Gauge field, fermion, path integral and probability distribution


• Monte Carlo gauge configuration generation


• HMC - Hybrid Monte Carlo (Duane et al, 1987, and reviewed by Neal, 1993) 
Hamiltonian Monte Carlo (new name by Neal, 2011)


• Current ML research directions


• Field transformation, change of variable, parametrized [arXiv:2201.01862]


• L2HMC, learn to HMC, generalized MD [arXiv:2105.03418, arXiv:2112.01582]


• Monte Carlo in propagator measurement


• Outlook
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https://arxiv.org/abs/2201.01862
https://arxiv.org/abs/2105.03418
https://arxiv.org/abs/2112.01582


Gauge field on a spacetime lattice
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⟸ example of non-dynamic gauge



• Wick rotation 


• Imaginary time


• Real action bounded from below


• Monte Carlo

t → − iτ

Path integral to Monte Carlo
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⟨Ω |T{ϕ(x)ϕ(y)} |Ω⟩ = lim
T→∞(1−iϵ)

∫ 𝒟ϕ ϕ(x)ϕ(y)exp [i ∫ T
−T

d4z ℒ]
∫ 𝒟ϕ exp [i ∫ T

−T
d4z ℒ]



Lattice gauge theory
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⟨O(U, q, q̄)⟩ =
1
Z ∫ [dU]∏

f

[dqf][dq̄f]O(U, q, q̄)e−Sg[U]−∑f q̄f M[U]qf ∫ qdq = 1 ∫ dq = 0



Dirac operator, determinant, inverse
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Dirac operator

• Naive Dirac operator leads to doubling of 
momentum poles per dimension


• Fermion actions:


• Wilson, Staggered, Domain wall, Overlap, ...
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HMC
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Hamiltonian dynamics moves long distances 
Slow modes exist in multi-D potential 
Difficult to go over potential barrier



Incomplete list of HMC tricks in production

• Task: sampling space-time lattice gauge field with about tens of billions of d.o.f.


• Omelyan, higher order integrators, with force-gradient terms


• Splitting fermion determinant in multiple terms, from ratios of determinants of unequal 
fermion masses


• Force from individual terms smaller


• Large mass terms cheaper inversion


• Sexton & Weingarten, 1992, MD integration scheme


• Larger time steps for expensive, small force terms


• Smaller time steps for cheap, large force terms
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Path integral, change of variables
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• Change of variables: use a continuously differentiable bijective map  
from target field  to the mapped field , same group manifold 
for us


• Sample  with HMC according to the new action: Field Transformation 
HMC (FTHMC)


• Want the effective action to have lower potential barriers, or more uniform 
dynamics (smaller difference between slow and fast modes)


• The Jacobian determinant and its derivative must remain simple

ℱ−1

U V = ℱ−1(U)

V

⟨𝒪⟩ =
1
Z ∫ 𝒟U𝒪(U)e−S(U) =

1
Z ∫ 𝒟V𝒪(ℱ(V))e−S(ℱ(V))+ln|ℱ*| where ℱ* =

∂ℱ(V)
∂V

SFT(V) = S(ℱ(V)) − ln |ℱ*(V) |



Parametrized bijection map
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• Gauge covariant, dynamics remain the same with local gauge transformations, 


• Lie group element, exponential map from the group algebra (differentials in tangent directions)


• Generalize it for machine learning


• Make the coefficients arbitrary functions of gauge invariant quantities


•  a list of traced Wilson loops local to , and independent of 


•  is a convolutional neural network,  is one of the output channels


•  ensures a positive definite Jacobian

Ωx ∈ SU(3)

X, Y, … x, μ Ux,μ

𝒩 𝒩l

c tan−1[ ⋅ ]

Ux,μ → U′￼x,μ = eΠx,μUx,μ where Πx,μ = ∑
l

ϵl∂x,μWl

ϵx,μ,l = c tan−1[𝒩l(X, Y, …)]

Ux,μ ⟶ U′￼x,μ = Ω†
xUx,μΩx+ ̂μ



Localized Coefficients, by Convolutional Neural Networks

• Pick a subset of gauge links to update at a time (red links)


• Compute Wilson loops independent of the to-be-updated links (green loops)


• Pass through a series of convolutional neural networks and obtain coefficients
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What to optimize

• Match the field transformed force (gradient of the effective action) against the 
force of the original action at a stronger coupling (away from the continuum limit)


• Other possibilities under investigation


• directly minimize the force


• log mean exp difference


• error term after leapfrog integration
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Neural Network Field Transformation and Its Application in HMC Xiao-Yong Jin
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Figure 2: Left: Topological charge autocorrelation from direct HMC with 642 lattices. Right: Power law
scaling of W(X = 16) with HMC versus 1/V with fixed +/V, or constant physical volumes.

generated lattice configurations. The dashed line in the figure is a quadratic fit in the log-log scale to
all the points to guide the eye.

We train the neural network parameterized field transformation by minimizing the di�erence
between the force of the transformed action and the force of the original U(1) gauge action on *̃ at a
fixed V = 2.5. Concretely the loss function on a transformed field *̃ is,

L(V, *̃) =
’

?2{2,4,6,8,10,1}

2?

+1/?

�����
�����
m(FT(V, *̃)

m*̃
�
m((V = 2.5, *̃)

m*̃

�����
�����
?

, (10)

where | | · | |? denotes ?-norm, and 2? controls the optimization to favor volume averages or peaks
on individual links. We set 22 = 24 = 26 = 28 = 21 = 1 and 210 = 0 for the models presented here,
unless specified otherwise. We start from randomized neural networks weights, train the models
from V = 3, and after that load the trained model and continue training at V = 4. We repeat this
procedure at V = 5 and 6. We generate 217 independent gauge configurations at each V before
training. At each V value, the training uses Adam optimizer [10], and goes through pre-generated
217 configurations once, with a batch size of 128. With 642 lattices, the training for each V value
took about 35 minutes on a Tesla V100-SXM2-16GB GPU.

The trained models used as transformations in HMC appear to improve the tunneling of
topological charges in successive Markov Chain states. Figure 3 shows the same power law scaling
as in the right panel of figure 2, with the dashed line denotes the values from direct HMC without
transformation. The figure contains HMC runs with two di�erent models trained with a lattice
volume of 642 at V = 5 and 6 respectively. We employ the models for a fixed volume at 642 at
di�erent V values, and for fixed +/V values with volumes of 662, 682, 702, 722, 742, and 762.
It seems that a single model applied to di�erent volumes and V values shows the same scaling
coe�cients as direct HMC without transformations. The tunneling improves from the model trained
at V = 5 to the model trained at V = 6.

For understanding actual simulation cost, we study how the Molecular Dynamics (MD) step size
changes, with di�erent models, as we use a fixed trajectory length of 4, and tune the step size to have
an acceptance rate at around 80%. Figure 4 shows the acceptance rate, step size, and corresponding

5



Results from 2D U(1) lattice fields, correlation of topological charge
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Figure 4: Acceptance rate, MD step size, and improvement in tunneling of topological charges with trained
models of field transformation with two fixed values of +/V, corresponding to + = 642, 662, 682, 702, 722,
742, and 762. NTHMC denotes HMC with neural network parameterized field transformation, using models
trained at V = 5 and 6 with + = 642.

improvement in autocorrelation of HMC with neural network parameterized field transformations
(NTHMC) against direct HMC, using the same trained models as in figure 3. With acceptance rate
around 80%, the step sizes required by HMC reduces with increasing V, while the step sizes required
by NTHMC increases. Therefore with the trained models of neural network parameterized field
transformations, in order to achieve a constant acceptance rate, we are able to reduce the numbers of
force evaluations per trajectory as the lattice coupling V increases.

We see the similar behavior with a fixed lattice size of 642. Figure 5 contains two models shown
in figure 3, and one additional model labeled NTHMC†, which is also from training at V = 6 but with
the 8-norm and 10-norm coe�cients in the loss function, equation (10), set to 28 = 210 = 5. This

6
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Figure 2: Left: Topological charge autocorrelation from direct HMC with 642 lattices. Right: Power law
scaling of W(X = 16) with HMC versus 1/V with fixed +/V, or constant physical volumes.

generated lattice configurations. The dashed line in the figure is a quadratic fit in the log-log scale to
all the points to guide the eye.

We train the neural network parameterized field transformation by minimizing the di�erence
between the force of the transformed action and the force of the original U(1) gauge action on *̃ at a
fixed V = 2.5. Concretely the loss function on a transformed field *̃ is,

L(V, *̃) =
’

?2{2,4,6,8,10,1}
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+1/?

�����
�����
m(FT(V, *̃)
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�
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, (10)

where | | · | |? denotes ?-norm, and 2? controls the optimization to favor volume averages or peaks
on individual links. We set 22 = 24 = 26 = 28 = 21 = 1 and 210 = 0 for the models presented here,
unless specified otherwise. We start from randomized neural networks weights, train the models
from V = 3, and after that load the trained model and continue training at V = 4. We repeat this
procedure at V = 5 and 6. We generate 217 independent gauge configurations at each V before
training. At each V value, the training uses Adam optimizer [10], and goes through pre-generated
217 configurations once, with a batch size of 128. With 642 lattices, the training for each V value
took about 35 minutes on a Tesla V100-SXM2-16GB GPU.

The trained models used as transformations in HMC appear to improve the tunneling of
topological charges in successive Markov Chain states. Figure 3 shows the same power law scaling
as in the right panel of figure 2, with the dashed line denotes the values from direct HMC without
transformation. The figure contains HMC runs with two di�erent models trained with a lattice
volume of 642 at V = 5 and 6 respectively. We employ the models for a fixed volume at 642 at
di�erent V values, and for fixed +/V values with volumes of 662, 682, 702, 722, 742, and 762.
It seems that a single model applied to di�erent volumes and V values shows the same scaling
coe�cients as direct HMC without transformations. The tunneling improves from the model trained
at V = 5 to the model trained at V = 6.

For understanding actual simulation cost, we study how the Molecular Dynamics (MD) step size
changes, with di�erent models, as we use a fixed trajectory length of 4, and tune the step size to have
an acceptance rate at around 80%. Figure 4 shows the acceptance rate, step size, and corresponding
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Scaling of the integrated autocorrelation length

Fixed neural network architecture

Trained weights at four different conditions

HMC

[arXiv:2201.01862]

https://arxiv.org/abs/2201.01862


Current work, on 4D SU(3) gauge fields

• The number of terms grows, and cost grows combinatorially


• for updating the red link in a 3D lattice. From left to right, (a) the links in 
black used to compute Wilson loops as input to a neural network, (b) two 6-
link rectangle loops parallel to the red link, (c) four 6-link rectangle loops 
perpendicular to the red link on one side, (d) four plaquette perpendicular 
to the red link on one side. 

15
(a) (b) (c) (d)

Figure 2: Input to the neural network that computes smearing coefficients
for updating the red link in a 3D lattice. From left to right, (a) the links in
black used to compute Wilson loops as input to a neural network, (b) two
6-link rectangle loops parallel to the red link, (c) four 6-link rectangle loops
perpendicular to the red link on one side, (d) four plaquette perpendicular to
the red link on one side.

We generate decorrelated configurations at 𝛽 = 0.7796, with lattice volume83 × 16, using 4 HMC streams, trajectory length 4, saving configurations every
16 trajectories (or 64 MDTU).

4.1 Loss Functions

Denote the difference in force computed from transformed action and the
original action with different couplings,

Δ𝑥,𝜇,𝑐 = 𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T), (8)

with the subscript 𝑐 denote the degree of freedom of the gauge Lie algebra,
and per link (𝑥,𝜇) norm squared as,

Δ2𝑥,𝜇 = ∑𝑐 (𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T))2, (9)

or the norm,

Δ𝑥,𝜇 = (∑𝑐 (𝜕𝑥,𝜇,𝑐𝑆FT(𝑉;𝛽) − 𝜕𝑥,𝜇,𝑐𝑆(𝑉;𝛽T))2)1/2 . (10)

3



L2HMC, generalized leapfrog layers

• Original L2HMC, Levy et. al, 2017 (arXiv:1711.09268)


• We generalized it to independent leapfrog layers and adapt to gauge field


• Maximize the effective change of topology, A(x*, v* |x, v)(Q* − Q)2

16

v′￼ = v −
ϵ
2

∂xS(x)

x′￼ = x + ϵv′￼

v′￼′￼ = v −
ϵ
2

∂xS(x′￼)

PoS(LATTICE2021)508

LeapfrogLayers Sam Foreman

where Zx̄ = [<̄ � x, v], Zx = [< � x, v] (Zv = [x, mx((x)]) is independent of x (v) and is passed as
input to the update functions ⇤± (�±). The acceptance probability

�(b⇤ |b) = min
⇢
1,

?(b⇤)
?(b) J (b⇤, b)

�
(12)

now includes a Jacobian factor J (b⇤, b) which allows the inclusion of non-symplectic update steps.
The Jacobian comes from the E (G) scaling term in the E (G) update, and is easily calculated.

1. Update :

2. Update half of  via :

3. Update (other) half of  using :

4. Half-step full  update:

Invertible NN

(a) Generalized leapfrog update.

update

update

(b) Illustration of the data flow through a leapfrog layer.

 

 

translationforce scalingscaling

scalingtrainable step sizes translationscaling

(c) Detailed view of the update functions �+,⇤+ for the : th leapfrog step.

Figure 3: Illustrations of the generalized leapfrog update. In Figure 3a, 3c, we denote x̄: = <̄ � x: .

3.1 Network Details

Normalizing flows [3] are an obvious choice for the structure of the update functions. These
architectures are easily invertible while maintaining a tractable Jacobian determinant, and have also
been shown to be e�ective at approximating complicated target distributions in high-dimensional
spaces [2–13].

We maintain separate networks �, ⇤ with identical architectures for updating v and x, respec-
tively. Without loss of generality, we describe below the details of the x update for the forward
(3 = +) direction, ⇤+[G<̄; Zx̄]3. For simplicity, we describe the data flow through a single leapfrog
layer, which takes as input Zx̄ = (G<̄, v). For the 2D * (1) model, the gauge links are encoded as

3To get the update for the 3 = � direction, we invert the update functions and run them in the opposite order.

5
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Results from 2D U(1) lattices
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4. Results

Figure 4: Estimated gQRint vs V.

We can measure the performance
of our approach by comparing the inte-
grated autocorrelation time against tra-
ditional HMC. We see in Figure 4 that
our estimate of the integrated autocor-
relation time is much shorter for the
trained model across V 2 [2, 7]. To
better understand how these transfor-
mations e�ect the HMC update, we can
look at how various quantities change
over the course of a trajectory, as shown
in Figure 6. We see from the plot of
H � Õ

log |J | in Figure 6c that the
trained sampler artificially increases the
energy towards the middle of the trajec-
tory. This is analogous to reducing the coupling V during the trajectory, as can be seen in Figure 7b.
In particular, we can see that for V = 7, the value of the plaquette at in the middle of the trajectory
roughly corresponds to the expected value at V = 3, indicated by the horizontal dashed line. This
e�ective reduction in the coupling constant allows our sampler to mix topological charge values in
the middle of the trajectory, before returning to the stationary distribution at the end, as can be seen
in Figure 6b. By looking at the variation in the average plaquette hG% � G⇤%i over a trajectory for
models trained at multiple values of beta we are able to better understand how our sampler behaves.
This allows our trajectories to explore new regions of the target distribution which may have been
previously inaccessible.
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NLF�MC Step

101

102

103

104
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N
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�
Q in
t

HMC
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Figure 5: Comparison of the integrated autocorrelation time for trained models vs HMC with di�erent
trajectory lengths, #LF, at V = 4, 5, 6, 7 (left to right).
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Dynamics per leapfrog layers
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Figure 6: Evolution of di�erent quantities over a single trajectory consisting of #LF = 10 leapfrog steps.
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Figure 7: Plots showing how the plaquette varies over a single trajectory for models trained at V = 3, 4, 5, 6, 7.

5. Conclusion

In this work we have proposed a generalized sampling procedure for HMC that can be used for
generating gauge configurations in the 2D * (1) lattice model. We showed that our trained model
is capable of outperforming traditional sampling techniques across a range of inverse coupling
constants, as measured by the integrated autocorrelation time of the topological charge. By looking
at the evolution of di�erent quantities over the generalized leapfrog trajectory, we are able to gain
insight into the mechanism driving this improved behavior.
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Monte Carlo in propagator measurement

• Typical quark propagator, the solution of 


• Construct propagators, such as "Pion" 


• Average as many lattice points as possible, but inversion is costly


• Use random source, with statistical error 


• Class of variance reduction techniques  such that


•  has smaller variance;  is cheaper to evaluate


• Applies with or without random source


• Examples: compute  using low modes of D, with approximate high modes

DS(x, y) = δ

⟨Pa(x)Pb(y)⟩ ∝ − δab⟨tr{S(x, y)S(x, y)†}⟩

∼ 1/ N

⟨O⟩ = ⟨O − Ô⟩ + ⟨Ô⟩

⟨O − Ô⟩ ⟨Ô⟩

Ô
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Outlook

• FTHMC with neural networks helps reduce autocorrelation in HMC


• L2HMC learns to inject energy in order to tunnel barriers


• Application in production requires balancing the cost and the benefit


• ML Code: https://github.com/nftqcd


• Difficulties in scaling up


• Requires computing the Jacabian determinant and its derivatives wrt the lattice fields


• Cost grows with spacetime dimension and the total field degrees of freedom


• Available neural network frameworks are unprepared for 4D grid of Lie group elements; auto-
grad wastes huge amount memory (size and bandwidth) in copying tensors; no optimized 
routines for periodic boundary conditions
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