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Outline

e Gauge field, fermion, path integral and probability distribution
e Monte Carlo gauge configuration generation

e HMC - Hybrid Monte Carlo (Duane et al, 1987, and reviewed by Neal, 1993)
Hamiltonian Monte Carlo (new name by Neal, 2011)

e Current ML research directions

e Field transformation, change of variable, parametrized [arXiv:2201.01862]

e [2HMC, learn to HMC, generalized MD [arXiv:2105.03418, arXiv:2112.01582]

e Monte Carlo in propagator measurement

e OQutlook


https://arxiv.org/abs/2201.01862
https://arxiv.org/abs/2105.03418
https://arxiv.org/abs/2112.01582

Gauge tield on a spacetime lattice
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Path integral to Monte Carlo
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e Wick rotationrt — — it
e Imaginary time
e Real action bounded from below

e Monte Carlo



Lattice gauge theory
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Dirac operator, determinant, inverse

M local sparse cheap
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Dirac operator
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e Wilson, Staggered, Domain wall, Overlap, ...
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HMC

Hamiltonian dynamics moves long distances

Slow modes exist in multi-D potential
Difficult to go over potential barrier
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Incomplete list of HMC tricks in production

e Task: sampling space-time lattice gauge field with about tens of billions of d.o.I.

e Omelyan, higher order integrators, with force-gradient terms

e Splitting fermion determinant in multiple terms, from ratios of determinants of unequal
fermion masses

e Force from individual terms smaller
e Large mass terms cheaper inversion
e Sexton & Weingarten, 1992, MD integration scheme
e Larger time steps for expensive, small force terms

e Smaller time steps for cheap, large force terms



Path integral, change of variables

e Change of variables: use a continuously differentiable bijective map F~1

from target field U to the mapped field V = %~ 1(U), same group manifold
for us

(0) = %J@U@(U)e—S(U) = %[gzm(%(V))e—S(%VD“n‘%‘ where #, =

0F (V)
oV

o Sample V with HMC according to the new action: Field Transformation
HMC (FTHMC) Ser(V) = S(F(V)) —In| F (V)|

e Want the effective action to have lower potential barriers, or more uniform
dynamics (smaller difference between slow and fast modes)

e The Jacobian determinant and its derivative must remain simple
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Parametrized bijection map

« Gauge covariant, dynamics remain the same with local gauge transformations, €2 € SU(3)
o — OF
Ux,u —> Ux,ﬂ =Q'U_ €

X~ X, U= x+p0

e Lie group element, exponential map from the group algebra (differentials in tangent directions)
A | | —
U,, = Uy, =e"U,, whereTl, = ) €d, W,

L . . [
e Generalize it for machine learning

e Make the coetficients arbitrary functions of gauge invariant quantities

_ —1
€, = Clan [/Vl(X, Y, )]
e X, 71, ... alist of traced Wilson loops local to x, ¢, and independent of U, ,

o J/J is a convolutional neural network, ./, is one of the output channels

o ctan”![ - ] ensures a positive definite Jacobian
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Localized Coetficients, by Convolutional Neural Networks
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e Pick a subset of gauge links to update at a time (red links)

e Compute Wilson loops independent of the to-be-updated links (green loops)

e Pass through a series of convolutional neural networks and obtain coeftficients
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What to optimize

e Match the field transformed force (gradient of the effective action) against the
force of the original action at a stronger coupling (away from the continuum limit)

L(B.0) = Z cp ||0SeT(B,U) 8S(B=2.5,U)

1 a -
pe{2,4,6,8,10,00} vi/p ou ou p

e Other possibilities under investigation
e directly minimize the force
e Jog mean exp difference

e error term after leapfrog integration
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larXiv:2201.01862]

Results from 2D U(1) lattice fields, correlation of topological charge
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Scaling of the integrated autocorrelation length
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Fixed neural network architecture

Trained weights at four different conditions

14


https://arxiv.org/abs/2201.01862

Current work, on 4D SU(3) gauge tields

e The number of terms grows, and cost grows combinatorially

e for updating the red link in a 3D lattice. From left to right, (a) the links in
black used to compute Wilson loops as input to a neural network, (b) two 6-
link rectangle loops parallel to the red link, (c¢) four 6-link rectangle loops
perpendicular to the red link on one side, (d) four plaquette perpendicular
to the red link on one side. / /

s

VI Y
/

15



L2HMC, generalized leapirog layers

e Original L2ZHMC, Levy et. al, 2017 (arXiv:1711.09268)

e We generalized it to independent leapfrog layers and adapt to gauge field

€ V scaling - force scalin&]- translati
/ y :
V' =V ——0 S(x) = [T vi; G | = vi 0 exp(555(6n)) — 5 [0S (ar) © exp(ehah (6w ) + (G
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€ : : : + A+ th
]/ / (c) Detailed view of the update functions I'", A™ for the k™ leapfrog step.
V =V — EOXS (X )

o Maximize the effective change of topology, A(x™, v* | x, v)(O* — Q)2
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larXiv:2105.03418, arXiv:2112.01582]

Results from 2D U(1) lattices
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Figure 5: Comparison of the integrated autocorrelation time for trained models vs HMC with different
trajectory lengths, Ny g, at 8 =4, 5, 6,7 (left to right).
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Dynamics per leapfrog layers
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Figure 6: Evolution of different quantities over a single trajectory consisting of Ny g = 10 leapfrog steps.
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Monte Carlo in propagator measurement

Typical quark propagator, the solution of DS(x,y) = 0
Construct propagators, such as "Pion" (P4x)P’(y)) o — 8 (tr{S(x, y)S(x,y)"})
Average as many lattice points as possible, but inversion is costly

Use random source, with statistical error ~ 1 / \ﬁ\f

Class of variance reduction techniques (O) = (O — O) + (O) such that

. (O — O) has smaller variance; (O) is cheaper to evaluate

e Applies with or without random source

o Examples: compute O using low modes of D, with approximate high modes
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Outlook

e FTHMC with neural networks helps reduce autocorrelation in HMC
e L2HMC learns to inject energy in order to tunnel barriers
e Application in production requires balancing the cost and the benefit

e ML Code: https://github.com/nftqcd

e Diftficulties in scaling up
e Requires computing the Jacabian determinant and its derivatives wrt the lattice fields
e Cost grows with spacetime dimension and the total field degrees of freedom

e Available neural network frameworks are unprepared for 4D grid of Lie group elements; auto-
ograd wastes huge amount memory (size and bandwidth) in copying tensors; no optimized
routines for periodic boundary conditions
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