

Rare Events and their Optimization

Vishwas Rao vhebbur@anl.gov

Collaborators: Shanyin Tong (NYU), Anirudh Subramanyam (ANL), Mihai Anitescu (ANL & UChicago), Emil Constantinescu (ANL), and Romit Maulik (ANL) HEP (05/18/2023)

Motivation

- Extreme weather events
 - Flooding
 - Earthquakes
 - Tornadoes
- Cascading power failures
 - 2003 in USA
 - 2012 in India
 - 2012 in NoVA region
 - 2021 in Texas
- Huge costs incurred (US only)
 - 2017 174 Billion
 - 2018 155 Billion

Hurricane Harvey caused extreme flooding in parts of Houston, TX - 2017

Compiled from the CERC investigation report

RESOLVE

Image credit: AICHE, CERC investigation report

A thought experiment

- Components of a system are independent from one another (above a certain scale)
 - At much larger scales the magnitude of fluctuations of the system follows a normal distribution (loosely follows from the central limit theorem)
 - Probabilities of the events many std deviations from the mean **are astronomically improbable**.
 - For example: Consider 100 independent ladders each with 1/10 probability of falling.
- Components of a system are interdependent
 - Interdependencies can lead to a distribution of fluctuations in which the probability of an extreme event, while still small is **not astronomically small**.
 - If we tie all the ladders together, while the probability of an individual ladder falling is smaller – but we would have significantly increased the probability of all the ladders collapsing.

Concept and Figure borrowed from An Introduction to Complex Systems Science and its Applications

Examples of Complex Systems

Map of U.S. interstate and intrastate natural gas pipelines

Texas Blackout: Before

Texas Blackout: After. About 4.4 Million people were affected

30-31st July, 2012 Power Blackout in India A review

Compiled from the CERC investigation report

Blackout in India: 2012. About 620 Million people were affected.

Causes for disruption

- Weather events
 - Texas 2021, California 2020
- Poor planning
 - Texas 2021,
 - NE US 2003 (A software bug in the alarm system)
 - California 2020.
- Terrorist attacks
 - Ukraine Cyberattack (2015)

Common Themes

- Rare
 - O(100) Power outages per year in US
 - O(1000) large floods in the last 35 years
- High-Impact
 - Costs O(\$1B)
 - Huge societal costs
- Questions
 - Risk Quantification
 - Risk Mitigation

Rare event problem formulation

- Estimating the probability of rare events: $\mathbb{P}(F(\mathbf{x}, \theta) \geq z)$
- Optimization under rare events: $\begin{array}{c|c} \text{Risk Mitigation} \\ \text{minimize} \\ \mathbf{x} \in \mathcal{X} \end{array} \quad c(\mathbf{x}) & \text{Risk Quantification} \\ \text{subject to} & \mathbb{P}(F(\mathbf{x}, \theta) \geq z) \leq \alpha \quad \text{for some fixed } \alpha \ll 1. \end{array}$

 $\begin{array}{l} F: \mathcal{X} \times \Theta \to \mathbb{R} : \text{Limit state function} \\ \theta \in \Theta : \text{random parameter} \\ \mathbf{x} \in \mathcal{X} : \text{control, can be infinite-dimensional} \\ z \in \mathbb{R} : \text{threshold at which the system fails} \\ \alpha \in (0, 1) : \text{risk of failure} \end{array}$

Challenges

- Not enough data that corresponds to the rare events
- Computationally expensive
 - For example: estimating the odds of an event whose probability is ~ 1e-3, for an underlying simulation that requires 10 minutes per simulation, requires two years of serial computation for a std. dev of 10%.
- Mitigation is even more harder
 - Sampling-based methods require $O(lpha^{-1})$ samples
 - Optimization problem size grows linearly with samples

Overview of results: Risk Quantification

• Accurate results with O(1000) samples for small systems

- Uses Rice's formula + Bayesian Inference
- Extensible to larger systems

Overview of results: Risk Mitigation

• Sampling free methods (LDT + Bilevel optimization)

- Scalable for ``Extremely rare events"
- Works for Gaussian and Gaussian mixtures

Existing approaches

- Monte Carlo simulation
 - Draw random samples from p
 - Simulate the dynamics with each random sample
 - Compute the fraction of the samples that exceed the threshold

•
$$P_u^{MC}(\mathbf{x}_0^1, \dots, \mathbf{x}_0^M) = \frac{1}{M} \sum_{i=1}^M \mathbb{I}(\mathbf{x}_0^i)$$

- Importance sampling:
 - Construct a ``suitable" biasing distribution
 - Draw random samples from the biasing distribution
 - Sum the "importance weights" for the samples that exceed threshold

•
$$P_u^{IS}(\bar{\mathbf{x}}_0^1, \dots, \bar{\mathbf{x}}_0^M) = \frac{1}{M} \sum_{i=1}^M \mathbb{I}(\bar{\mathbf{x}}_0^i) \frac{p(\bar{\mathbf{x}}_0^i)}{q(\bar{\mathbf{x}}_0^i)}$$

Problem formulation

• Consider the following dynamical system

$$\mathbf{x}' = f(t, \mathbf{x}), \quad t = [0, T]$$
$$\mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{x}_0 \sim p, \quad \mathbf{x} \in \Omega,$$

- We are interested in estimating $P_T(z) \coloneqq \mathbb{P}(F(\mathbf{x}, \theta) > z)$ $F(\mathbf{x}, \theta) \coloneqq \max \mathbf{c}^{\top}(\mathbf{x}(t, \mathbf{x}_0)) \ge z$
- The initial state of the system has the PDF `p'. When f is linear and p is Gaussian, the evolution of x is analytically tractable. However, when f is nonlinear, the evolution of x is not analytically tractable.

Sketch of our Approach

• Let $\Omega(z) \subset \Omega$ denote the set of all initial conditions that cause an excursion. That is:

$$\Omega(z) \coloneqq \left\{ \mathbf{x}_0 : \sup_{[0,T]} \mathbf{c}^\top \mathbf{x}(t, \mathbf{x}_0) \ge z \right\}$$

- Then $P_T(z)$ is the measure $(\Omega(z))$
- We use Rice's formula to gain insights about $\Omega(z)$

Our Approach: Rice's formula + Bayesian Inference

- Unfortunately, $\varphi_t(z,y)$ is analytically computable only for Gaussian processes
- The key idea is that values 't' and `y' at which $y\varphi_t(z,y)$ is large contribute the most to integral in Rice's formula. We use this idea to construct a biasing distribution.

Ideas for constructing Biasing distribution

- Consider the forward map $\mathcal{G} : \mathbb{R}^{d \times 1} \to \mathbb{R}^2$ that evaluates $\begin{bmatrix} \mathbf{c}^{\mathsf{T}} \mathbf{x}(t) \\ \mathbf{c}^{\mathsf{T}} \mathbf{x}'(t) \end{bmatrix}$ using the dynamics for a given initial conditions and at a specified time t.
- $\Omega(z)$ can be approximated by $\mathcal{G}^{-1}\left(\begin{vmatrix} z \\ y_i \end{vmatrix} \right)$
- This is ill-posed; there are multiple $x_0's$ that map to a given $\begin{bmatrix} z \\ y_i \end{bmatrix}$.

Biasing distribution is II U III

Left: The product of the derivative and the joint PDF of the state and its derivative for u=17. Center: Samples drawn from $y\varphi_t(u, y)$ using DRAM MCMC. These samples will be used to construct the likelihood. **Right**: Autocorrelation between the samples. Picking every tenth sample will "ensure" independence

Choice of mean and covariance of likelihood

- Sampling from $y arphi_t(u,y)$ gives us the likely time at which there is an excursion. So to determine the mean and covariance of the likelihood, we look at $~y_i, u_i \mid t_i$

• Use Laplace approximation to estimate mean and covariance

Approaches to solve Bayesian inverse problems

- Laplace approximation at MAP (MAP-based IS) → [R, Anitescu, In Press, SIAM JUQ]
 - Solve the inverse problem using the negative log likelihood as cost function
 - Use the Hessian inverse at the MAP point to approximate the covariance of the posterior
 - Use LBFGS to solve the optimization problem (Poblano toolbox)
 - Adjoints to obtain the gradient
- MCMC-based IS → [R, Anitescu, In Press, SIAM JUQ]
 - Sample directly from the posterior
 - DRAM algorithm
- Machine Learning based approach to find the inverse maps \rightarrow [MLDADS (2020)]

Inverse map using neural networks

The inverse map may be expensive to obtain

- Solving Bayesian inverse problems is expensive
- Can we build data-driven surrogates for approximating pre-images?
- We may utilize a fully connected neural network to approximate this map.

A fully connected artificial neural network

- Learning
 - We train our map given multiple examples of forward simulations.
 - The input to the map is the outcome of the simulation and the initial condition is the output.
 - Our neural network training is a non-convex optimization we use the ADAM Stochastic Gradient
 optimizer with a learning rate of 0.001. Consistently reducing accuracy on a held out data-set is used
 to terminate optimization (i.e., the prevention of overfitting)

Inverse map using neural networks

- Quantifying map fidelity
 - We track the reducing objective function until improvement has stalled
 - The held-out (validation) data is used to select the best model
 - Scatter plots on the 'test' data (i.e., data completely unused till this point) show quality of predictions

Two plots for each dimension of outcome Map evaluation in <1e-3 seconds

Nonlinear Example

• We consider the Lotka Volterra example:

$$\frac{dx_1}{dt} = \alpha x_1 - \beta x_1 x_2,$$

$$\frac{dx_2}{dt} = \delta x_1 x_2 - \gamma x_2, \quad \mathbf{x}(0) \sim \mathcal{N}\left(\begin{bmatrix}10\\10\end{bmatrix}, 0.8 \times I_2\right)$$

- We are interested in estimating x2 exceeding 17
- We also look at Lorenz96 system (100D)

Nominal and biasing distributions

Samples from Nominal and Biasing distributions. The Biasing distributions mainly picks samples from the tails. This is obtained using the MCMC based IS approach.

Results (Gaussian Uncertainties)

- ``True" probability is 3.28e-5 (Obtained with 10 Million samples of MC)
- Both MCMC and MAP based IS yield comparable results for similar amount of "work"

Results (Gaussian Uncertainties)

• ``True" probability is 8.09e-5 (Obtained with 10 Million samples of MC)

Results (non-Gaussian Uncertainties)

- The true probability here is 6.281 \times 10⁻⁴.
- Convergence of different approaches with an uniform initial distribution of the state.
- The convergence is not as smooth as it is for a Gaussian initial distribution, and we attribute the cause to the edge effects of a uniform distribution.

Comparison between Conventional MCS and ML-based IS. We observe even with small number training data, we obtain fairly accurate estimates and as we increase the training data, the accuracy improves dramatically.

Computational Cost

- Generating 20K training data points cost approximately equivalent to 400 Model evaluations
- Training the dataset required 180 seconds on an 8th generation Intel Core I7 with python 3.6.8 (this is equivalent to about 50 model evaluations).
- Inference costs were negligible.

Approaches to approximate probabilistic constraints

• Sample average approximation

 $egin{aligned} \min_{\mathbf{x}\in\mathcal{X}} & c(\mathbf{x}) \ \mathrm{s.t.} & rac{1}{N}\sum_{k=1}^N \mathbb{1}_{F(\mathbf{x}, heta_k)\geq z} \leq lpha \end{aligned}$

• CVaR: Convex approximation of constraint

Large Deviation Theory - A quick introduction

- LDT is concerned with the asymptotic behavior of tails of probability distributions specifically the rates of exponential decay of probabilistic measures of extreme events.
- It uses the **rate functions** to characterize the asymptotic behavior of rare probabilities.
- Recently Grafke, Vanden Eijnden, and Dematteis (2018, 2019) and later Tong, Stadler, and Vanden Eijnden (2020) adapted the classical LDT and sharp asymptotics to study the behavior of rare events.
- The key idea is to find a dominating point in the rare event set by solving an optimization problem and estimate probabilities solely based on this.

Large Deviation Theory

Regularity Conditions:

- F is concave w.r.t θ
- $\nabla_{\theta} F$ is Lipschitz continuous

I(θ) is the Legendre-Fenchel transform of cumulant generating functions. Example:

 $\theta \sim \mathcal{N}(\theta_0, \Sigma), \ I(\theta) = \frac{1}{2} \|\theta - \theta_0\|_{\Sigma^{-1}}^2.$

• Probability computation requires optimization:

 $\mathbb{P}(F(\mathbf{x}, \theta) \ge z) \asymp \exp(-I(\theta^*)) \text{ as } z \to \infty,$ $\theta^* = \underset{\theta: F(\mathbf{x}, \theta) = z}{\operatorname{argmin}} I(\theta)$

Explicit formulae for chance constraints

 $P_1(\mathbf{x}, \theta^{\star}) = \Phi(-\sqrt{2I(\theta^{\star})})$

 $P_2 \approx P_1 \left[(\hat{n}^\top H^{-1} \hat{n}) \det H \right]^{-\frac{1}{2}}$

Probability estimation with Gaussian Mixtures

• First order approximation:

• Second order approximation:

$$\begin{split} P^{FO}(\mathbf{x},\theta^{\star}) &= \sum_{i=1}^{m} w_{i} \Phi(-\|\xi_{i}^{\star}\|), \\ \|\xi_{i}^{\star}\| &= \frac{\langle \nabla_{\theta} F(\mathbf{x},\theta^{\star}), \theta^{\star} - \mu_{i} \rangle}{\|\Sigma_{i}^{\frac{1}{2}} \nabla_{\theta} F(\mathbf{x},\theta^{\star})\|}. \end{split} P^{SO}(\mathbf{x},\theta^{\star}) &= \sum_{i=1}^{m} w_{i} \Phi\left(-\sqrt{2I_{i}(\tilde{\theta}_{i})}\right) \det\left(I_{d} - \lambda_{i} \Sigma_{i}^{\frac{1}{2}} \nabla_{\theta}^{2} F(\mathbf{x},\theta^{\star}) \Sigma_{i}^{\frac{1}{2}}\right)^{-\frac{1}{2}}, \\ \lambda_{i} &= \|\Sigma_{i}^{\frac{1}{2}} \nabla_{\theta} I_{i}(\tilde{\theta}_{i})\| / \|\Sigma_{i}^{\frac{1}{2}} \nabla_{\theta} F^{SO}(\mathbf{x},\theta^{\star},\tilde{\theta}_{i})\|, \\ \tilde{\theta}_{i} &= \operatorname{argmin} \quad \frac{1}{2} (\theta - \mu_{i})^{\top} \Sigma_{i}^{-1} (\theta - \mu_{i}) =: I_{i}(\theta) \\ & \text{subject to} \quad F^{SO}(\mathbf{x},\theta^{\star},\theta) = z, \ i = 1, \dots, m. \end{split}$$

Chance Constraints to Bilevel optimization

Optimal boundary control for steady state advection diffusion problem

$$-\nabla \cdot (\kappa(x,\xi)\nabla y(x)) + w(x) \cdot \nabla y(x) = f(x,\xi), \qquad x \in \Omega,$$

$$(\kappa(x,\xi)\nabla y(x)) \cdot n(x) = \frac{1}{\epsilon_0} (u(x) - y(x)), \text{ on } \Gamma_c,$$

$$(\kappa(x,\xi)\nabla y(x)) \cdot n(x) = 0, \qquad \text{ on } \Gamma_n,$$

$$\begin{split} F(u,\xi) &\coloneqq \frac{1}{|\Omega_0|} \int_{\Omega_0} y(x;u,\xi) dx, \\ & \underset{u}{\text{minimize}} \quad \frac{1}{2} \int_{\Gamma_c} u^2(x) dx, \\ & \text{subject to} \quad \mathbb{P}(F(u,\xi) \geq z) \leq \alpha, \longleftarrow \text{Chance Constraints} \end{split}$$

Optimal boundary control for steady state advection diffusion problem

lpha	$rac{1}{2}\int_{\Omega_0}(u^\star)^2dx$	$\mathbb{P}(F(u^{\star},\xi) \geq z)$
10^{-1}	3.52	8.90e-02
10^{-2}	4.43	9.50e-03
10^{-3}	5.22	9.15e-04
10^{-4}	5.88	9.54 e- 05
10^{-5}	6.41	9.60e-06

The objective values and feasibilities of the boundary control problem for different α using SORM

Concluding Remarks and References

- Rice's formula + Bayesian Inference for risk quantification
 - Can be extended to Gaussian mixtures and by controlling the variance of mixture components, this can be used in optimization under rare chance constraints
- LDT + Bilevel optimization holds a lot of promise
 - Works well for Concave or nearly concave limit state functions

arXiv:2001.11904 [pdf, other] math.NA math.DS math.PR

Efficient computation of extreme excursion probabilities for dynamical systems Authors: Vishwas Rao, Mihai Anitescu

arXiv:2006.03466 [pdf, other] physics.comp-ph

A Machine-Learning-Based Importance Sampling Method to Compute Rare Event Probabilities Authors: Vishwas Rao, Romit Maulik, Emil Constantinescu, Mihai Anitescu

arXiv:2011.06052 [pdf, other] math.OC math.PR stat.CO

Optimization under rare chance constraints

Authors: Shanyin Tong, Anirudh Subramanyam, Vishwas Rao