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Motivation

• Extreme weather events
• Flooding

• Earthquakes

• Tornadoes

• Cascading power failures
• 2003 in USA

• 2012 in India

• 2012 in NoVA region

• 2021 in Texas

• Huge costs incurred (US only)
• 2017 – 174 Billion 

• 2018 – 155 Billion 

Hurricane Harvey caused extreme flooding in parts of Houston, TX - 2017

Image credit: AICHE, CERC investigation report
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A thought experiment
• Components of a system are independent from 

one another (above a certain scale)
• At much larger scales the magnitude of fluctuations of the 

system follows a normal distribution (loosely follows from 
the central limit theorem)

• Probabilities of the events many std deviations from the 
mean are astronomically improbable.

• For example: Consider 100 independent ladders each with 
1/10 probability of falling.

• Components of a system are interdependent 
• Interdependencies can lead to a distribution of fluctuations 

in which the probability of an extreme event, while still 
small is not astronomically small.

• If we tie all the ladders together, while the probability of an 
individual ladder falling is smaller – but we would have 
significantly increased the probability of all the ladders 
collapsing. Concept and Figure borrowed from An Introduction to 

Complex Systems Science and its Applications
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Examples of Complex Systems



4

Texas Blackout: Before Texas Blackout: After. 
About 4.4 Million 
people were affected

Blackout in India: 
2012. About 620 
Million people were 
affected.

Causes for disruption
• Weather events

• Texas 2021, California 2020
• Poor planning

• Texas 2021, 
• NE US 2003 (A software bug in the alarm system)
• California 2020.

• Terrorist attacks
• Ukraine Cyberattack (2015)

Common Themes
• Rare

• O(100) Power outages per year in US
• O(1000) large floods in the last 35 years

• High-Impact
• Costs O($1B)
• Huge societal costs

• Questions
• Risk Quantification
• Risk Mitigation
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Rare event problem formulation

• Estimating the probability of rare events: 

• Optimization under rare events: Risk Mitigation

Risk Quantification
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Challenges

• Not enough data that corresponds to the rare 

events

• Computationally expensive
• For example: estimating the odds of an event whose 

probability is ~ 1e-3, for an underlying simulation that 

requires 10 minutes per simulation, requires two years of 

serial computation for a std. dev of 10%.

• Mitigation is even more harder
• Sampling-based methods require                      samples

• Optimization problem size grows linearly with samples
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Overview of results: Risk Quantification 

• Accurate results with O(1000) samples for small systems
• Uses Rice’s formula + Bayesian Inference
• Extensible to larger systems

2D Problem (LV) 100D Problem (Lorenz 96)
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Overview of results: Risk Mitigation 

“SAFE” Region

• Sampling free methods (LDT + Bilevel optimization)
• Scalable for ``Extremely rare events”
• Works for Gaussian and Gaussian mixtures
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Existing approaches
• Monte Carlo simulation

• Draw random samples from 

• Simulate the dynamics with each random sample

• Compute the fraction of the samples that exceed the threshold 

•  

• Importance sampling: 

• Construct a ``suitable” biasing distribution 

• Draw random samples from the biasing distribution

• Sum the  “importance weights” for the samples that exceed threshold

•  
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Problem formulation

• Consider the following dynamical system 

• We are interested in estimating

• The initial state of the system has the PDF `p’. When f is linear and p is Gaussian, the 

evolution of x is analytically tractable. However, when f is nonlinear, the evolution of x 

is not analytically tractable.
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Sketch of our Approach

• Let                   denote the set of all initial conditions that cause an excursion. That is:

• Then             is the 

• We use Rice’s formula to gain insights about 
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Our Approach: Rice’s formula + Bayesian Inference

• Rice’s formula:

• For Gaussian processes: 

• Unfortunately,                 is analytically computable only for Gaussian processes

• The key idea is that values 't’ and `y’ at which                    is large contribute the most to 

integral in Rice’s formula.  We use this idea to construct a biasing distribution.

Derivative of the SP Joint PDF

Faster than exponential convergence

Expected # of excursions 
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Ideas for constructing Biasing distribution

• Consider the forward map                                          

that evaluates                 using the dynamics 

for a given initial conditions and at a 

specified time t.

•          can be approximated by 

• This is ill-posed; there are multiple x_0’s 

that map to a given       .

IIIIII O
Input space Output space

Biasing distribution is II U III
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Overview of our approach

Gaussian 
Uncertainties

Nonlinear Dynamical 
systems Non-Gaussian 

Processes

Linearization + 
Rice’s formula

Likelihood

Prior

MAP/MCMC or 
ML-based methods

Posterior/
IBD

Excursion 
Probability 
Estimates Importance Sampling
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Sampling from

Left: The product of the derivative and the joint PDF of the state and its derivative for u=17. 
Center: Samples drawn from                        using DRAM MCMC. These samples will be used to 
construct the likelihood. Right: Autocorrelation between the samples. Picking every tenth 
sample will “ensure” independence
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Choice of mean and covariance of likelihood

• Sampling from                      gives us the likely time at which there is an excursion. So to 

determine the mean and covariance of the likelihood, we look at  

• Use Laplace approximation to estimate mean and covariance
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Approaches to solve Bayesian inverse problems

• Laplace approximation at MAP (MAP-based IS) à [R, Anitescu, In Press, SIAM JUQ]

• Solve the inverse problem using the negative log likelihood as cost function

• Use the Hessian inverse at the MAP point to approximate the covariance of the posterior

• Use LBFGS to solve the optimization problem (Poblano toolbox)

• Adjoints to obtain the gradient 

• MCMC-based IS à [R, Anitescu, In Press, SIAM JUQ]

• Sample directly from the posterior

• DRAM algorithm

• Machine Learning based approach to find the inverse maps à[MLDADS (2020)]
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Inverse map using neural networks
• The inverse map may be expensive to obtain

• Solving Bayesian inverse problems is expensive

• Can we build data-driven surrogates for approximating pre-images?

• We may utilize a fully connected neural network to approximate

this map.

• Learning

• We train our map given multiple examples of forward simulations.

• The input to the map is the outcome of the simulation and the initial condition is the output.

• Our neural network training is a non-convex optimization – we use the ADAM Stochastic Gradient 

optimizer with a learning rate of 0.001. Consistently reducing accuracy on a held out data-set is used 

to terminate optimization (i.e., the prevention of overfitting) 

A fully connected 
artificial neural network
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Inverse map using neural networks
• Quantifying map fidelity

• We track the reducing objective function until improvement 

has stalled

• The held-out (validation) data is used to select the best

model

• Scatter plots on the ‘test’ data (i.e., data completely unused 

till this point) show quality of predictions

Two plots for each 
dimension of outcome

Map evaluation in <1e-3 
seconds
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Nonlinear Example

• We consider the Lotka Volterra example:         

• We are interested in estimating x2 exceeding 17

• We also look at Lorenz96 system (100D)
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Nominal and biasing distributions

Samples from Nominal and Biasing distributions. The Biasing distributions mainly 
picks samples from the tails. This is obtained using the MCMC based IS approach.
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Results (Gaussian Uncertainties)

• ``True” probability is 3.28e-5 (Obtained with 10 Million samples of MC)
• Both MCMC and MAP based IS yield comparable results for similar amount of “work”
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Results (Gaussian Uncertainties)

• ``True” probability is 8.09e-5 (Obtained with 10 Million samples of MC)
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Results (non-Gaussian Uncertainties)

• The true probability here is 6.281 ｘ 10-4.
• Convergence of different approaches with an 

uniform initial distribution of the state. 
• The convergence is not as smooth as it is for a 

Gaussian initial distribution, and we attribute the 
cause to the edge effects of a uniform 
distribution.



30

Results

Comparison between Conventional MCS and ML-based IS. We observe even with small number training 
data, we obtain fairly accurate estimates and as we increase the training data, the accuracy improves 
dramatically. 
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Computational Cost

• Generating 20K training data points cost approximately equivalent to 400 Model 

evaluations
• Training the dataset required 180 seconds on an 8th generation Intel Core I7 with python 3.6.8 (this is equivalent to 

about 50 model evaluations). 

• Inference costs were negligible.
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Approaches to approximate probabilistic constraints
• Sample average approximation

• CVaR: Convex approximation of constraint
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Large Deviation Theory -  A quick introduction

• LDT is concerned with the asymptotic behavior of tails of probability distributions – 
specifically the rates of exponential decay of probabilistic measures of extreme events.

• It uses the rate functions to characterize the asymptotic behavior of rare probabilities.

• Recently Grafke, Vanden Eijnden, and Dematteis (2018, 2019) and later Tong, Stadler, and 
Vanden Eijnden (2020) adapted the classical LDT and sharp asymptotics to study the 
behavior of rare events.

• The key idea is to find a dominating point in the rare event set by solving an optimization 
problem  and estimate probabilities solely based on this. 
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Large Deviation Theory

•        is the Legendre-Fenchel 
transform of cumulant generating 
functions.  Example:

• Probability computation requires 
optimization:

Regularity Conditions:
• F is concave w.r.t
•            is Lipschitz continuous           



35

Explicit formulae for chance constraints
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Probability estimation with Gaussian Mixtures

• First order approximation: • Second order approximation:
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Chance Constraints to Bilevel optimization

                                                                            
Optimization under 
Rare Chance constraints 

Bilevel optimization

KKT Reformulation
• Accurate if: Regularity conditions 

hold or 
• ``Good” if  F is close to concave 

and z is “large”

• Sampling free
• Works for Gaussian 

mixtures

LDT approximation
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Optimal boundary control for steady state advection 
diffusion problem

PDE }
Chance Constraints 
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Optimal boundary control for steady state advection 
diffusion problem

The optimal boundary conditions for 
different      using SORM 

The objective values and feasibilities of 
the  boundary control problem for 
different      using SORM 



40

Concluding Remarks and References
• Rice’s formula + Bayesian Inference for risk quantification

• Can be extended to Gaussian mixtures and by controlling the variance of mixture components, this can be used in optimization 

under rare chance constraints

• LDT + Bilevel optimization holds a lot of promise
• Works well for Concave or nearly concave limit state functions


