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Introduction
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The success of HEP experiments
critically relies on advancements in
physics modelling and computational
techniques, driven by a close dialogue
between large experimental
collaborations and small teams of
event generator authors.
Development, validation, and
long-term support of event generators
requires a vibrant research program at
the interface of theory, experiment,
and computing
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Why do we need generators?

Precision understanding of Standard
Model
Ability to model BSM processes
Essential role in planning and design
of future experiments
Connects the theory and experimental
community
Modelling non-perturbative effects
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Computing Bottlenecks
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No R&D improvements
R&D most probable outcome
10 to 20% annual resource increase

LHC requires large number of Monte Carlo events
Due to CPU costs, MC statistics will become significant uncertainty
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Motivation
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W++jets, LHC@14TeV
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[S. Höche, S. Prestel, H. Schulz, 1905.05120]

Time to generate an event dominated by hard process not shower
Large computational cost for unweighting at high multiplicity
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General Problem
Differential Cross Section

dσ = dxadxbdΦn(a, b; 1, . . . , n)|M |2

Phase Space

dΦn(a, b; 1, . . . , n) =

[
n∏

i=1

d3~pi
(2π)3 2Ei

]
(2π)4δ(4)

(
pa + pb −

n∑
i=1

pi

)
.
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Importance Sampling

No Importance Sampling∫ 1

0
f(x)dx

MC−−→ 1

N

∑
i

f(xi) iid U(0, 1)

Importance Sampling∫ 1

0

f(x)

q(x)
q(x)dx

MC−−→ 1

N

∑
i

f(xi)

q(xi)
iid q(x)

Goal: Choose a function q(x) such that f(x)
q(x) ≈ 1.

Best is q(x) = f(x), requires analytic inverse of CDF
Acceptable to get close enough by fitting f(x) to some assumed form
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VEGAS

The VEGAS algorithm [P. Lepage 1980]

Assumes integrand factorizes; i.e. f(~x) = f0(x0) · · · fn(xn)

Adapts bin edges such that area of each bin is the same
Issues with features aligned along diagonals
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Multichannel
Phase Space Factorization

dΦn(a, b; 1, . . . , n) = dΦn−m+1(a, b;π,m+ 1, . . . , n)
dsπ
2π

dΦm(π; 1, . . . ,m) ,
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Multichanneling
Many different choices to factorize the phase space. Rewrite integral as:∫

f(x)dx =
∑
i

αi

∫
f(xi)dxi ,

∑
i

αi = 1
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Sherpa Approach

Recursively apply t-channel and s-channel until all pieces consistent of the basic
building blocks
Number of channels grows at the same rate as number of diagrams (i.e.
factorially)

J. Isaacson MC for Theory and Event Generation 9 / 25 Fermilab
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Chili Approach

t-channel Component

dxadxb dΦn(a, b; 1, . . . , n) =
2π

s

[
n−1∏
i=1

1

16π2
dp2i,⊥ dyi

dφi

2π

]
dyn .

s-channel Component

dΦ2({1, 2}; 1, 2) =
1

16π2

√
(p1p2)2 − p21p

2
2

(p1 + p2)2
d cos θ

{1,2}
1 dφ

{1,2}
1 .

Note: Chili provides a method to limit the number of s-channel components.
Reducing the scaling of the number of channels from factorial to polynomial.
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Overview of Machine Learning

[https://xkcd.com/1838/]

Machine Learning:
A complex function with
inputs and outputs
Train parameters by
minimizing a “loss
function”
Tools like TensorFlow,
PyTorch, Keras, etc.
make more like black box

J. Isaacson MC for Theory and Event Generation 11 / 25 Fermilab
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Jacobian Cost

Use GAN or Dense network as tranformation:
Network contains ndim nodes in input and output layers mapping from x to q(x)

Requires Jacobian from transformation of variables: q(y) = q(y(x)) = | ∂y∂x |
−1
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Jacobian takes O
(
n3

)
time to calculate, prohibitive at large n
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Normalizing Flows

Goal: Develop a network architecture with analytic Jacobian.

Requirements:
Bijective
Continuous
Flexible

Answer: Normalizing Flows!
First introduced in ”Nonlinear Independent Component Estimation” (NICE)
[1410.8516]

More complex transformations using splines in [1808.03856] and [1906.04032]

Easy to implement using TensorFlow-Probability [https://www.tensorflow.org/probability]

J. Isaacson MC for Theory and Event Generation 13 / 25 Fermilab
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Normalizing Flows: Basic Building Block

Forward Transform:

yA = xA

yB,i = C(xB,i;m(xA))

Inverse Transform:

xA = yA

xB,i = C−1(yB,i;m(yA))

The C function: numerically cheap,
easily invertible, and separable.

Jacobian:

∣∣ ∂y
∂x

∣∣ = ∣∣∣∣∣1 ∂C
∂xA

0 ∂C
∂xB

∣∣∣∣∣ = ∂C(xB ;m(xA))

∂xB

Jacobian is O (n)

J. Isaacson MC for Theory and Event Generation 14 / 25 Fermilab
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Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: [Müller et al. 1808.03856]

The NN predicts the pdf bin heights Qi.

pdf cdf

C =
b−1∑
k=1

Qk + αQb

α =
x− (b− 1)w

w∣∣∣ ∂C
∂xB

∣∣∣ = ∏
i

Qbi

w

J. Isaacson MC for Theory and Event Generation 15 / 25 Fermilab
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Normalizing Flows: Piecewise CDF

Rational Quadratic CDF: [Durkan et. al. 1906.04032]

Predict widths (w(k)), heights (y(k)), and derivatives (d(k)) of the knots of spline.

C = y(k) +
(y(k+1) − y(k))[s(k)α2 + d(k)α(1− α)]

s(k) + [d(k+1) + d(k) − 2s(k)]α(1− α)

α =
x− x(k)

w(k)
s(k) =

y(k+1) − y(k)

w(k)

J. Isaacson MC for Theory and Event Generation 15 / 25 Fermilab
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Test Functions: 4-d Camel

Target Distribution: Before Training:

f2(~x) =
1
2 (α

√
π)−n

(
exp {−

∑
i(xi−

1
3 )

2

α2 }+ exp {−
∑

i(xi−
2
3 )

2

α2 }
)

Expected Result: 0.963657 i-flow: 0.96365(10) VEGAS: 0.96345(10)

J. Isaacson MC for Theory and Event Generation 16 / 25 Fermilab
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Test Functions: 4-d Camel

Target Distribution: Final:

f2(~x) =
1
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√
π)−n
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∑
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2
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Other Integrands

4-dimensional Gaussian 4-dimensional Camel
54-dimensional Polynomial Scalar top loop

J. Isaacson MC for Theory and Event Generation 17 / 25 Fermilab
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Other Integrands: Handling hard cuts

i-flow trained with 5 million points
Initially uniform on [0, 1]

7500 points shown, with 6720 points
inside and 780 outside (89.6%
efficiency)

J. Isaacson MC for Theory and Event Generation 18 / 25 Fermilab
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Other Integrands

Number of function evaluations to reach uncertainty of 10−4 (10−5 for polynomial)
Dim VEGAS Foam i-flow

Gaussian

2 164, 436 6, 259, 812 2, 310, 000
4 631, 874 24, 094, 679 2, 285, 000
8 1, 299, 718 > 50, 000, 000 † 3, 095, 000
16 2, 772, 216 > 50, 000, 000 † 7, 230, 000

Camel

2 421, 475 5, 619, 646 2, 225, 000
4 24, 139, 889 21, 821, 075 8, 220, 000
8 > 50, 000, 000 † > 50, 000, 000 19, 460, 000
16 993, 294 † > 50, 000, 000 † 32, 145, 000 †

Entangled circles 2 43, 367, 192 17, 499, 823 23, 105, 000
Annulus w. cuts 2 4, 981, 080 † 11, 219, 498 17, 435, 000
Scalar-top-loop 3 152, 957 5, 290, 142 685, 000

Polynomial
18 42, 756, 678 > 50, 000, 000 585, 000
54 > 50, 000, 000 > 21, 505, 000 ∗ 685, 000
96 > 50, 000, 000 † > 10, 235, 000 ∗ 1, 145, 000

[C. Gao, JI, C. Krause, [arxiv:2001.05486, MLST]]
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Comparison between Sherpa, Chili, and Chili + NF

Integration Methods:
Sherpa uses recursive phase space,
number of channels grows factorially
Chili uses the new mapping with as
many s-channels as possible included.
This also grows factorially.
Chili (basic) uses the minimum
number of s-channels

Metrics:
Compare the statistical uncertainty for
a fixed number of events for
optimizing and estimating the
uncertainty
Compare the unweighting efficiency.
The unweighting efficiency is given by
the average weight of all events over
the bootstrapped median maximum
weight using 100 samples to estimate
the median. For details see [2001.10028] .

J. Isaacson MC for Theory and Event Generation 20 / 25 Fermilab
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Sherpa vs Chili

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

W++1j 0.5‰ 7× 10−2 0.6‰ 9× 10−2 0.6‰ 9× 10−2

W++2j 1.2‰ 9× 10−3 1.1‰ 2× 10−2 1.2‰ 1× 10−2

W++3j 2.0‰ 1× 10−3 2.0‰ 4× 10−3 2.9‰ 2× 10−3

W++4j 3.7‰ 2× 10−4 4.9‰ 7× 10−4 6.0‰ 3× 10−4

W++5j 7.2‰ 4× 10−5 22‰ 1× 10−5 26‰ 1× 10−5

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

Z+1j 0.4‰ 2× 10−1 0.5‰ 1× 10−1 0.5‰ 1× 10−1

Z+2j 0.8‰ 2× 10−2 0.8‰ 3× 10−2 1.0‰ 2× 10−2

Z+3j 1.3‰ 4× 10−3 1.6‰ 7× 10−3 2.5‰ 4× 10−3

Z+4j 2.2‰ 8× 10−4 3.6‰ 1× 10−3 5.0‰ 6× 10−4

Z+5j 3.7‰ 1× 10−4 11‰ 1× 10−4 13‰ 2× 10−4

J. Isaacson MC for Theory and Event Generation 21 / 25 Fermilab
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Chili vs Chili + NF

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
W++1j 0.4‰ 2× 10−1 0.2‰ 4× 10−1

W++2j 0.7‰ 4× 10−2 0.7‰ 5× 10−2

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
Z+1j 0.4‰ 2× 10−1 0.1‰ 5× 10−1

Z+2j 0.6‰ 5× 10−2 0.6‰ 6× 10−2

J. Isaacson MC for Theory and Event Generation 22 / 25 Fermilab
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Weight distributions (1 jet)
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Weight distributions (2 jet)
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Conclusions
Traditional Integration

Numerical integration and the need for Monte Carlo
VEGAS algorithm and its deficiencies

Chili
Develop new mapping that controls number of s-channels
Reduces scaling of number of channels
No significant efficiency or accuracy penalty

Normalizing Flows
Avoid computational difficulty of Jacobian
Using splines to approximate CDF

Outlook
Investigate more complex processes with normalizing flows
Combine normalizing flows with multichanneling
Implement GPU matrix element and phase space

J. Isaacson MC for Theory and Event Generation 25 / 25 Fermilab
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Other Integrands: Test Functions
Gaussian

f1(~x) = (α
√
π)−n exp {−

∑
i(xi−0.5)2

α2 }

Entangled Cricles

f3(x1, x2) = x
a
2 exp {−w|(x2 − p2)

2
+ (x1 − p1)

2 − r
2|}

+ (1 − x2)
a
exp {−w|(x2 − 1 + p2)

2
+ (x1 − 1 + p1)

2 − r
2|}

Annulus w. cuts

f4(x1, x2) =

{
1 0.2 <

√
x2
1 + x2

2 < 0.45

0 else

}

Scalar Box

f5(t1, t2, t3; s12, s23, s1, s2, s3, s4,m
2
1,m

2
2,m

2
3,m

2
4) with s12 = −s23 = 1302 GeV2, s1 = s2 = s3 = 0 GeV2, s4 = 1252 GeV2,

m1 = m2 = m3 = m4 = 175 GeV.

Polynomial

f6(x1, . . . , xn) =
∑n

i=1 −x2
i + xi

J. Isaacson MC for Theory and Event Generation 1 / 5 Fermilab



Sherpa vs Chili

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

h+1j 0.4‰ 2× 10−1 0.4‰ 2× 10−1 0.4‰ 2× 10−1

h+2j 0.8‰ 2× 10−2 0.6‰ 5× 10−2 0.6‰ 5× 10−2

h+3j 1.4‰ 3× 10−3 0.9‰ 2× 10−2 0.9‰ 2× 10−2

h+4j 2.4‰ 6× 10−4 1.6‰ 6× 10−3 1.7‰ 7× 10−3

h+5j 4.5‰ 1× 10−4 3.2‰ 1× 10−3 3.6‰ 1× 10−3

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

tt̄+0j 0.6‰ 1× 10−1 0.6‰ 1× 10−1 0.6‰ 1× 10−1

tt̄+1j 0.9‰ 2× 10−2 0.6‰ 6× 10−2 0.9‰ 3× 10−2

tt̄+2j 1.4‰ 4× 10−3 0.9‰ 2× 10−2 1.4‰ 1× 10−2

tt̄+3j 2.6‰ 7× 10−4 1.5‰ 7× 10−3 2.9‰ 2× 10−3

tt̄+4j 4.0‰ 1× 10−4 3.2‰ 1× 10−3 3.5‰ 8× 10−4
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Sherpa vs Chili

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

γ+1j 0.4‰ 2× 10−1 0.6‰ 1× 10−1 0.6‰ 1× 10−1

γ+2j 1.1‰ 7× 10−3 2.2‰ 3× 10−3 3.7‰ 1× 10−3

γ+3j 2.4‰ 5× 10−4 4.9‰ 4× 10−4 10‰ 1× 10−4

γ+4j 5.0‰ 7× 10−5 20‰ 3× 10−5 30‰ 4× 10−5

γ+5j 9.3‰ 2× 10−5 28‰ 7× 10−6 36‰ 2× 10−6

Process Sherpa Chili Chili (basic)
∆σ/σ η ∆σ/σ η ∆σ/σ η
6M pts 100 evts 6M pts 100 evts 6M pts 100 evts

2jets 0.6‰ 5× 10−2 0.4‰ 1× 10−1 0.5‰ 7× 10−2

3jets 1.2‰ 5× 10−3 1.0‰ 1× 10−2 1.8‰ 7× 10−3

4jets 2.5‰ 5× 10−4 2.0‰ 3× 10−3 3.4‰ 1× 10−3

5jets 4.7‰ 9× 10−5 5.1‰ 6× 10−4 8.1‰ 2× 10−4

6jets 7.0‰ 2× 10−5 15‰ 5× 10−5 14‰ 4× 10−5
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Chili vs Chili + NF

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
h+1j 0.2‰ 5× 10−1 0.05‰ 8× 10−1

h+2j 0.3‰ 1× 10−1 0.3‰ 2× 10−1

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
tt̄+0j 0.1‰ 6× 10−1 0.05‰ 7× 10−1

tt̄+1j 0.2‰ 3× 10−1 0.3‰ 2× 10−1
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Chili vs Chili + NF

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
γ+1j 0.6‰ 2× 10−1 0.1‰ 5× 10−1

γ+2j 1.8‰ 5× 10−3 1.4‰ 9× 10−3

Process Chili Chili (Basic)+NF
(color sum) ∆σ/σ η ∆σ/σ η

6M pts 100 evts 6M pts 100 evts
2jets 0.2‰ 4× 10−1 0.08‰ 6× 10−1

3jets 0.5‰ 6× 10−2 0.7‰ 3× 10−2
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