

Monte Carlo for Theory and Event Generation in HEP

Joshua Isaacson Argonne Mini-Workshop on Monte Carlo Methods 18 May 2023

Introduction

- The success of HEP experiments critically relies on advancements in physics modelling and computational techniques, driven by a close dialogue between large experimental collaborations and small teams of event generator authors.
- Development, validation, and long-term support of event generators requires a vibrant research program at the interface of theory, experiment, and computing

Why do we need generators?

- Precision understanding of Standard Model
- Ability to model BSM processes
- Essential role in planning and design of future experiments
- Connects the theory and experimental community
- Modelling non-perturbative effects

Computing Bottlenecks

- LHC requires large number of Monte Carlo events
- Due to CPU costs, MC statistics will become significant uncertainty

Motivation

[S. Höche, S. Prestel, H. Schulz, 1905.05120]

- Time to generate an event dominated by hard process not shower
- Large computational cost for unweighting at high multiplicity

4 / 25 🗳 Fermilab

General Problem

Differential Cross Section

$$\mathrm{d}\sigma = \mathrm{d}x_a \mathrm{d}x_b \mathrm{d}\Phi_n(a,b;1,\ldots,n)|M|^2$$

Phase Space

$$\mathrm{d}\Phi_n(a,b;1,\ldots,n) = \left[\prod_{i=1}^n \frac{\mathrm{d}^3 \vec{p_i}}{(2\pi)^3 \, 2E_i}\right] (2\pi)^4 \delta^{(4)} \left(p_a + p_b - \sum_{i=1}^n p_i\right).$$

Importance Sampling

No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

Importance Sampling

No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

Goal: Choose a function q(x) such that $\frac{f(x)}{q(x)} \approx 1$.

- Best is q(x) = f(x), requires analytic inverse of CDF
- \bullet Acceptable to get close enough by fitting $f(\boldsymbol{x})$ to some assumed form

Phase Space Construction

Comparison of Methods

The VEGAS algorithm [P. Lepage 1980]

• Assumes integrand factorizes; i.e. $f(\vec{x}) = f_0(x_0) \cdots f_n(x_n)$

Phase Space Construction

Comparison of Methods

Conclusions

The VEGAS algorithm [P. Lepage 1980]

- Assumes integrand factorizes; i.e. $f(\vec{x}) = f_0(x_0) \cdots f_n(x_n)$
- Adapts bin edges such that area of each bin is the same

The VEGAS algorithm [P. Lepage 1980]

- Assumes integrand factorizes; i.e. $f(\vec{x}) = f_0(x_0) \cdots f_n(x_n)$
- Adapts bin edges such that area of each bin is the same
- Issues with features aligned along diagonals

Multichannel

Phase Space Factorization

$$d\Phi_n(a,b;1,...,n) = d\Phi_{n-m+1}(a,b;\pi,m+1,...,n) \frac{ds_{\pi}}{2\pi} d\Phi_m(\pi;1,...,m) ,$$

Multichanneling

Many different choices to factorize the phase space. Rewrite integral as:

$$\int f(x)dx = \sum_{i} \alpha_{i} \int f(x_{i})dx_{i}, \qquad \sum_{i} \alpha_{i} = 1$$

Sherpa Approach

- Recursively apply t-channel and s-channel until all pieces consistent of the basic building blocks
- Number of channels grows at the same rate as number of diagrams (i.e. factorially)

Chili Approach

t-channel Component

$$dx_a dx_b d\Phi_n(a,b;1,...,n) = \frac{2\pi}{s} \left[\prod_{i=1}^{n-1} \frac{1}{16\pi^2} dp_{i,\perp}^2 dy_i \frac{d\phi_i}{2\pi} \right] dy_n .$$

s-channel Component

$$\mathrm{d}\Phi_2(\{1,2\};1,2) = \frac{1}{16\pi^2} \frac{\sqrt{(p_1p_2)^2 - p_1^2 p_2^2}}{(p_1 + p_2)^2} \,\mathrm{d}\cos\theta_1^{\{1,2\}} \,\mathrm{d}\phi_1^{\{1,2\}} \,.$$

Note: Chili provides a method to limit the number of s-channel components. Reducing the scaling of the number of channels from factorial to polynomial.

Overview of Machine Learning

[https://xkcd.com/1838/]

Machine Learning:

- A complex function with inputs and outputs
- Train parameters by minimizing a "loss function"
- Tools like TensorFlow, PyTorch, Keras, etc. make more like black box

Jacobian Cost

Use GAN or Dense network as tranformation:

- Network contains n_{dim} nodes in input and output layers mapping from x to q(x)
- Requires Jacobian from transformation of variables: $q(y) = q(y(x)) = |\frac{\partial y}{\partial x}|^{-1}$

Jacobian Cost

Use GAN or Dense network as tranformation:

- Network contains n_{dim} nodes in input and output layers mapping from x to q(x)
- Requires Jacobian from transformation of variables: $q(y) = q(y(x)) = |\frac{\partial y}{\partial x}|^{-1}$

• Jacobian takes $\mathcal{O}\left(n^3
ight)$ time to calculate, prohibitive at large n

Goal: Develop a network architecture with analytic Jacobian.

Goal: Develop a network architecture with analytic Jacobian. **Requirements:**

• Bijective

J. Isaacson

Goal: Develop a network architecture with analytic Jacobian. **Requirements:**

- Bijective
- Continuous

Goal: Develop a network architecture with analytic Jacobian. **Requirements:**

- Bijective
- Continuous
- Flexible

Goal: Develop a network architecture with analytic Jacobian. **Requirements:**

- Bijective
- Continuous
- Flexible

Answer: Normalizing Flows!

- First introduced in "Nonlinear Independent Component Estimation" (NICE) [1410.8516]
- More complex transformations using splines in [1808.03856] and [1906.04032]
- Easy to implement using TensorFlow-Probability [https://www.tensorflow.org/probability]

Normalizing Flows: Basic Building Block

Forward Transform:

$$y_A = x_A$$

$$y_{B,i} = C(x_{B,i}; m(x_A))$$

Inverse Transform:

$$x_A = y_A$$

$$x_{B,i} = C^{-1}(y_{B,i}; m(y_A))$$

The C function: numerically cheap, easily invertible, and separable.

Jacobian:

$$\left|\frac{\partial y}{\partial x}\right| = \begin{vmatrix} 1 & \frac{\partial C}{\partial x_A} \\ 0 & \frac{\partial C}{\partial x_B} \end{vmatrix} = \frac{\partial C(x_B; m(x_A))}{\partial x_B}$$

J. Isaacson

Normalizing Flows: Basic Building Block

Jacobian is $\mathcal{O}\left(\mathbf{n}\right)$

Normalizing Flows: Piecewise CDF

Conclusions

Normalizing Flows: Piecewise CDF

Normalizing Flows: Piecewise CDF

Test Functions: 4-d Camel

•
$$f_2(\vec{x}) = \frac{1}{2} (\alpha \sqrt{\pi})^{-n} \left(\exp\left\{ -\frac{\sum_i (x_i - \frac{1}{3})^2}{\alpha^2} \right\} + \exp\left\{ -\frac{\sum_i (x_i - \frac{2}{3})^2}{\alpha^2} \right\} \right)$$

Test Functions: 4-d Camel

•
$$f_2(\vec{x}) = \frac{1}{2} (\alpha \sqrt{\pi})^{-n} \left(\exp\left\{ -\frac{\sum_i (x_i - \frac{1}{3})^2}{\alpha^2} \right\} + \exp\left\{ -\frac{\sum_i (x_i - \frac{2}{3})^2}{\alpha^2} \right\} \right)$$

• Expected Result: 0.963657

• i-flow: 0.96365(10)

Other Integrands

J. Isaacson

Fermilab 17 / 25 4

Conclusions

Other Integrands: Handling hard cuts

- i-flow trained with 5 million points
- \bullet Initially uniform on $\left[0,1\right]$
- 7500 points shown, with 6720 points inside and 780 outside (89.6% efficiency)

Other Integrands

Number of function evaluations to reach uncertainty of 10^{-4} (10^{-5} for polynomial)

	Dim	VEGAS	Foam	i-flow
	2	164, 436	6,259,812	2,310,000
Cauccian	4	631,874	24,094,679	2,285,000
Gaussian	8	1,299,718	$> 50,000,000 \dagger$	3,095,000
	16	2,772,216	$> 50,000,000 \dagger$	7,230,000
	2	421,475	5,619,646	2,225,000
Camel	4	24, 139, 889	21,821,075	8, 220, 000
	8	$> 50,000,000 \dagger$	> 50,000,000	19, 460, 000
	16	993,294 †	$> 50,000,000 \dagger$	$32, 145, 000 \dagger$
Entangled circles	2	43, 367, 192	17,499,823	23, 105, 000
Annulus w. cuts	2	4,981,080 †	11, 219, 498	17, 435, 000
Scalar-top-loop	3	152,957	5,290,142	685,000
	18	42,756,678	> 50,000,000	585,000
Polynomial	54	> 50,000,000	> 21,505,000 *	685,000
	96	$> 50,000,000 \dagger$	> 10, 235, 000 *	1, 145, 000

[C. Gao, JI, C. Krause, [arxiv:2001.05486, MLST]]

Comparison between Sherpa, Chili, and Chili + NF

Integration Methods:

- Sherpa uses recursive phase space, number of channels grows factorially
- Chili uses the new mapping with as many s-channels as possible included. This also grows factorially.
- Chili (basic) uses the minimum number of s-channels

Metrics:

- Compare the statistical uncertainty for a fixed number of events for optimizing and estimating the uncertainty
- Compare the unweighting efficiency. The unweighting efficiency is given by the average weight of all events over the bootstrapped median maximum weight using 100 samples to estimate the median. For details see [2001.10028].

Sherpa vs Chili

Process	Sherpa		Chili		CHILI (basic)	
	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \ { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \ { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$
W^+ +1j	0.5‰	7×10^{-2}	0.6‰	9×10^{-2}	0.6‰	9×10^{-2}
W^+ +2j	1.2‰	9×10^{-3}	1.1%	2×10^{-2}	1.2‰	1×10^{-2}
W^+ +3j	2.0‰	1×10^{-3}	2.0‰	4×10^{-3}	2.9‰	2×10^{-3}
W^+ +4j	3.7‰	2×10^{-4}	4.9‰	$7 imes 10^{-4}$	6.0‰	3×10^{-4}
W^+ +5j	7.2‰	4×10^{-5}	22‰	1×10^{-5}	26‰	1×10^{-5}
Process	She	RPA	CH	IILI	Chili	(basic)
	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$
Z+1j	0.4‰	2×10^{-1}	0.5‰	1×10^{-1}	0.5‰	1×10^{-1}
Z+2j	0.8‰	2×10^{-2}	0.8‰	3×10^{-2}	1.0‰	2×10^{-2}
Z+3j	1.3‰	4×10^{-3}	1.6%	$7 imes 10^{-3}$	2.5‰	4×10^{-3}
Z+4j	2.2‰	8×10^{-4}	3.6‰	1×10^{-3}	5.0‰	6×10^{-4}
Z+5j	3.7‰	1×10^{-4}	11%	1×10^{-4}	13‰	2×10^{-4}

Chili vs Chili + NF

Process	CH	IILI	CHILI (B	asic) + NF
(color sum)	$\Delta \sigma / \sigma$ η		$\Delta\sigma/\sigma$	η
	6M pts	100 evts	6M pts	100 evts
W^+ +1j	0.4‰	2×10^{-1}	0.2‰	4×10^{-1}
W^+ +2j	0.7‰	4×10^{-2}	0.7‰	5×10^{-2}

Process	Ch	HLI	CHILI (Basic)+NF		
(color sum)	$\Delta \sigma / \sigma$ η		$\Delta \sigma / \sigma$	η	
	6M pts	100 evts	6M pts	100 evts	
Z+1j	0.4‰	2×10^{-1}	0.1‰	5×10^{-1}	
Z+2j	0.6‰	5×10^{-2}	0.6‰	6×10^{-2}	

Weight distributions (1 jet)

Weight distributions (2 jet)

Traditional Integration

- Numerical integration and the need for Monte Carlo
- VEGAS algorithm and its deficiencies

Traditional Integration

- Numerical integration and the need for Monte Carlo
- VEGAS algorithm and its deficiencies

Chili

- Develop new mapping that controls number of s-channels
- Reduces scaling of number of channels
- No significant efficiency or accuracy penalty

Traditional Integration

- Numerical integration and the need for Monte Carlo
- VEGAS algorithm and its deficiencies

Chili

- Develop new mapping that controls number of s-channels
- Reduces scaling of number of channels
- No significant efficiency or accuracy penalty

Normalizing Flows

- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

Traditional Integration

- Numerical integration and the need for Monte Carlo
- VEGAS algorithm and its deficiencies

Chili

- Develop new mapping that controls number of s-channels
- Reduces scaling of number of channels
- No significant efficiency or accuracy penalty

Normalizing Flows

- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

Outlook

- Investigate more complex processes with normalizing flows
- Combine normalizing flows with multichanneling
- Implement GPU matrix element and phase space

Other Integrands: Test Functions

Gaussian

$$f_1(\vec{x}) = (\alpha \sqrt{\pi})^{-n} \exp\{-\frac{\sum_i (x_i - 0.5)^2}{\alpha^2}\}$$

Entangled Cricles

$$f_3(x_1, x_2) = x_2^a \exp \{-w | (x_2 - p_2)^2 + (x_1 - p_1)^2 - r^2 | \} + (1 - x_2)^a \exp \{-w | (x_2 - 1 + p_2)^2 + (x_1 - 1 + p_1)^2 - r^2 | \}$$

Annulus w. cuts

$$f_4(x_1, x_2) = \left\{ \begin{array}{cc} 1 & 0.2 < \sqrt{x_1^2 + x_2^2} < 0.45 \\ 0 & \text{else} \end{array} \right\}$$

Scalar Box

 $f_5(t_1, t_2, t_3; s_{12}, s_{23}, s_1, s_2, s_3, s_4, m_1^2, m_2^2, m_3^2, m_4^2) \text{ with } s_{12} = -s_{23} = 130^2 \text{ GeV}^2, \ s_1 = s_2 = s_3 = 0 \text{ GeV}^2, \ s_4 = 125^2 \text{ GeV}^2, \ m_1 = m_2 = m_3 = m_4 = 175 \text{ GeV}.$

Polynomial

$$f_6(x_1, \dots, x_n) = \sum_{i=1}^n -x_i^2 + x_i$$

Sherpa vs Chili

Process	Sherpa		CHILI		CHILI (basic)	
	$\Delta\sigma/\sigma$ 6M pts	η 100 evts	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$
h+1j	0.4‰	2×10^{-1}	0.4‰	2×10^{-1}	0.4‰	2×10^{-1}
h+2j	0.8‰	2×10^{-2}	0.6‰	5×10^{-2}	0.6‰	5×10^{-2}
h+3j	1.4‰	3×10^{-3}	0.9‰	2×10^{-2}	0.9‰	2×10^{-2}
h+4j	2.4‰	6×10^{-4}	1.6%	6×10^{-3}	1.7%	7×10^{-3}
h+5j	4.5‰	1×10^{-4}	3.2‰	1×10^{-3}	3.6‰	1×10^{-3}
Process	She	RPΔ	Ch	IILI	Chili	(basic)
	0111	101 11	01		0.11111	()
	$\Delta\sigma/\sigma$ 6M pts	η 100 evts	$\Delta\sigma/\sigma$ 6M pts	η 100 evts	$\Delta\sigma/\sigma$ 6M pts	η 100 evts
tī+0j	$\frac{\Delta\sigma/\sigma}{6M \text{ pts}}$	$\frac{\eta}{100 \text{ evts}}$ 1×10^{-1}	$\frac{\Delta\sigma/\sigma}{6M \text{ pts}}$	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \end{array}$	$\frac{\Delta\sigma/\sigma}{6M \text{ pts}}$	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ 1 \times 10^{-1} \end{array}$
$tar{t}$ +0j $tar{t}$ +1j	$\Delta \sigma / \sigma$ 6M pts 0.6‰ 0.9‰	$\frac{\eta}{100 \text{ evts}}$ $\frac{1 \times 10^{-1}}{2 \times 10^{-2}}$	$\frac{\Delta\sigma/\sigma}{6M \text{ pts}}$ 0.6%	$ \begin{array}{c c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 6 \times 10^{-2} \end{array} $	$\frac{\Delta\sigma/\sigma}{6M \text{ pts}}$ 0.6% 0.9%	$ \begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 3 \times 10^{-2} \end{array} $
$tar{t}$ +0j $tar{t}$ +1j $tar{t}$ +2j		$ \begin{array}{r} \eta \\ 100 \text{ evts} \\ 1 \times 10^{-1} \\ 2 \times 10^{-2} \\ 4 \times 10^{-3} \end{array} $		$ \begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 6 \times 10^{-2} \\ 2 \times 10^{-2} \end{array} $	$ \frac{\Delta \sigma / \sigma}{6 M \text{ pts}} 0.6\% \\ 0.9\% \\ 1.4\% $	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 3 \times 10^{-2} \\ 1 \times 10^{-2} \end{array}$
$tar{t}$ +0j $tar{t}$ +1j $tar{t}$ +2j $tar{t}$ +3j	$\begin{array}{c} \Delta \sigma / \sigma \\ 6 \text{M pts} \\ \hline 0.6 \% \\ 0.9 \% \\ 1.4 \% \\ 2.6 \% \end{array}$	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 2 \times 10^{-2} \\ 4 \times 10^{-3} \\ 7 \times 10^{-4} \end{array}$	$ \frac{\Delta \sigma / \sigma}{6M \text{ pts}} 0.6\% 0.6\% 0.9\% 1.5\% $	$ \begin{array}{c} \eta \\ 100 \text{ evts} \end{array} \\ \hline 1 \times 10^{-1} \\ 6 \times 10^{-2} \\ 2 \times 10^{-2} \\ 7 \times 10^{-3} \end{array} $	$ \frac{\Delta \sigma / \sigma}{6M \text{ pts}} 0.6\% 0.9\% 0.1.4\% 2.9\% 0 $	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 3 \times 10^{-2} \\ 1 \times 10^{-2} \\ 2 \times 10^{-3} \end{array}$

Sherpa vs Chili

Process	Sherpa		CHILI		CHILI (basic)	
	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \ { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$	$\Delta\sigma/\sigma$ 6M pts	$\eta \ 100 \; { m evts}$
γ +1j	0.4‰	2×10^{-1}	0.6‰	1×10^{-1}	0.6‰	1×10^{-1}
$\gamma+2j$	1.1%	7×10^{-3}	2.2‰	3×10^{-3}	3.7‰	1×10^{-3}
$\gamma+3$ j	2.4‰	5×10^{-4}	4.9‰	4×10^{-4}	10‰	1×10^{-4}
γ +4j	5.0‰	$7 imes 10^{-5}$	20‰	3×10^{-5}	30‰	4×10^{-5}
$\gamma+5$ j	9.3‰	2×10^{-5}	28‰	7×10^{-6}	36‰	2×10^{-6}
			·			
Process	She	RPA	Ch	IILI	Chili	(basic)
Process	$ m She \ \Delta \sigma / \sigma$ 6M pts	RPA η 100 evts	$ m CH$ $\Delta\sigma/\sigma$ 6M pts	IILI η 100 evts	CHILI $\Delta \sigma / \sigma$ 6M pts	(basic) η 100 evts
Process 2jets	SHE $\Delta \sigma / \sigma$ 6M pts 0.6‰	$\frac{\eta}{100 \text{ evts}}$ $\frac{5 \times 10^{-2}}{3}$	CH $\Delta \sigma / \sigma$ 6M pts 0.4‰	$\begin{array}{c} \text{IILI} & \eta \\ 100 \text{ evts} \\ 1 \times 10^{-1} \end{array}$	CHILI $\Delta \sigma / \sigma$ 6M pts 0.5‰	$(\text{basic}) \\ \frac{\eta}{100 \text{ evts}} \\ \overline{7 \times 10^{-2}}$
Process 2jets 3jets	SHE $\Delta \sigma / \sigma$ 6M pts 0.6‰ 1.2‰	RPA η 100 evts 5×10^{-2} 5×10^{-3}	$\begin{array}{c} & \text{CH} \\ \Delta \sigma / \sigma \\ \text{6M pts} \\ \hline 0.4\% \\ 1.0\% \end{array}$	$ \begin{array}{c} \eta \\ 100 \text{ evts} \\ 1 \times 10^{-1} \\ 1 \times 10^{-2} \end{array} $	CHILI $\Delta \sigma / \sigma$ 6M pts 0.5‰ 1.8‰	(basic) η 100 evts 7×10^{-2} 7×10^{-3}
Process 2jets 3jets 4jets	SHE $\Delta \sigma / \sigma$ 6M pts 0.6‰ 1.2‰ 2.5‰	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 5 \times 10^{-2} \\ 5 \times 10^{-3} \\ 5 \times 10^{-4} \end{array}$	CH Δσ/σ 6M pts 0.4‰ 1.0‰ 2.0‰	$ \begin{array}{c c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 1 \times 10^{-2} \\ 3 \times 10^{-3} \end{array} $	CHILI $\Delta \sigma / \sigma$ 6M pts 0.5‰ 1.8‰ 3.4‰	(basic) η 100 evts 7×10^{-2} 7×10^{-3} 1×10^{-3}
Process 2jets 3jets 4jets 5jets	SHE $\Delta \sigma / \sigma$ 6M pts 0.6‰ 1.2‰ 2.5‰ 4.7‰	$\begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 5 \times 10^{-2} \\ 5 \times 10^{-3} \\ 5 \times 10^{-4} \\ 9 \times 10^{-5} \end{array}$	$ \begin{array}{c} CH \\ \Delta \sigma / \sigma \\ 6M \text{ pts} \\ 0.4\% \\ 1.0\% \\ 2.0\% \\ 5.1\% \\ \end{array} $	$ \begin{array}{c} \eta \\ 100 \text{ evts} \\ \hline 1 \times 10^{-1} \\ 1 \times 10^{-2} \\ 3 \times 10^{-3} \\ 6 \times 10^{-4} \end{array} $	CHILI $\Delta \sigma / \sigma$ 6M pts 0.5‰ 1.8‰ 3.4‰ 8.1‰	(basic) η 100 evts 7×10^{-2} 7×10^{-3} 1×10^{-3} 2×10^{-4}

Process	CH	IILI	CHILI (Basic)+NF		
(color sum)	$\Delta \sigma / \sigma$ η		$\Delta \sigma / \sigma$	η	
	6M pts	100 evts	6M pts	100 evts	
h+1j	0.2‰	5×10^{-1}	0.05‰	8×10^{-1}	
h+2j	0.3‰	1×10^{-1}	0.3‰	2×10^{-1}	

Process	Ch	IILI	CHILI (Basic)+NF		
(color sum)	$\Delta \sigma / \sigma$	η	$\Delta \sigma / \sigma$	η	
	6M pts	100 evts	6M pts	100 evts	
$t\bar{t}$ +0j	0.1‰	6×10^{-1}	0.05‰	7×10^{-1}	
$t\bar{t}$ +1j	0.2‰	3×10^{-1}	0.3‰	2×10^{-1}	

Process	CH	IILI	CHILI (Basic)+NF		
(color sum)	$\Delta \sigma / \sigma$ η		$\Delta \sigma / \sigma$	η	
	6M pts	100 evts	6M pts	100 evts	
γ +1j	0.6‰	2×10^{-1}	0.1‰	5×10^{-1}	
$\gamma+2j$	1.8‰	5×10^{-3}	1.4‰	9×10^{-3}	

Process	Ch	IILI	CHILI (Basic)+NF		
(color sum)	$\Delta \sigma / \sigma$	η	$\Delta \sigma / \sigma$	η	
	6M pts	100 evts	6M pts	100 evts	
2jets	0.2‰	4×10^{-1}	0.08‰	6×10^{-1}	
3jets	0.5‰	6×10^{-2}	0.7‰	3×10^{-2}	