

A Graph Neural Network for 3D Reconstruction in Liquid Argon Time Projection Chambers

V Hewes 18th May 2022 DUNE FD sim/reco meeting

Introduction

- Developing Graph Neural Network (GNN) reconstruction for LArTPCs as part of the Exa.TrkX collaboration.
- This effort has been ongoing for ~5 years, originally motivated by reconstructing atmospheric v_T interactions in the DUNE far detector.
- Branched out to other detector technologies, ie. MicroBooNE, with the aim of developing general-purpose reconstruction tools.
- Last DUNE update was exactly two years ago, May 18th 2021!

 Exa.TrkX is a collaboration developing nextgeneration Graph Neural Network (GNN) reconstruction for HEP:

 Exa.TrkX is a collaboration developing nextgeneration Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

 Exa.TrkX is a collaboration developing nextgeneration Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

Intensity Frontier

- Explore viability of HEP.TrkX network for neutrino physics.
- Develop GNN-based reconstruction for Liquid Argon TPCs.

 Exa.TrkX is a collaboration developing nextgeneration Graph Neural Network (GNN) reconstruction for HEP:

Energy Frontier

- Expand on HEP.TrkX's prototype GNN for HL-LHC.
- Incorporate into ATLAS's simulation and validation chain.

Intensity Frontier

- Explore viability of HEP.TrkX network for neutrino physics.
- Develop GNN-based reconstruction for Liquid Argon TPCs.

See <u>Paulo Calafiura's overview talk!</u>

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

- First proof-of-concept model achieved 84% accuracy in classifying graph edges.
 - Reasonable performance on showers, struggled to correctly identify type of track.
 - See <u>arxiv:2103.06233</u>.

Second-generation model

- Second-generation model incorporated a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.

Second-generation model

- Second-generation model incorporated a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.
- Introduce more sophisticated semantic labelling which considers a wider variety of particle types, ie. EM showers, Michel electrons, diffuse EM activity.

Second-generation model

- Second-generation model incorporated a wide range of improvements over first proof-of-concept.
- Move from edge classification to node (ie. hit) classification.
 - Graph edge classification for track forming is a natural choice for LHC detectors, where sequential layers provide a natural constraint on edges.
 - Dense LArTPC environment provides no such constraints, and number of edges explodes.
- Introduce more sophisticated semantic labelling which considers a wider variety of particle types, ie. EM showers, Michel electrons, diffuse EM activity.
- Build a model which **classifies all views simultaneously**, instead of classifying each detector views as an independent event.
 - Furthermore, allow information exchange between 2D views to break degeneracies.

· Perform message-passing independently in each detector view.

Perform message-passing independently in each detector view.

· Perform message-passing independently in each detector view.

· Perform message-passing independently in each detector view.

NuGraph2

- Network achieves ~86% overall hit classification accuracy.
- With 3D connections, consistency of representations between views is now around 98%, compared to ~70% without.

Confusion matrix weighted by true semantic label. to show efficiency.

NuGraph2

- Network achieves ~86% overall hit classification accuracy.
- With 3D connections, consistency of representations between views is now around 98%, compared to ~70% without.

Confusion matrix weighted by **predicted semantic label**. to show **purity**.

NuGraph2

- Network achieves ~86% overall hit classification accuracy.
- With 3D connections, consistency of representations between views is now around 98%, compared to ~70% without.

True semantic labels

Example ve interaction

True semantic labels

Example ve interaction

Example v_e interaction

Example v_e interaction

True semantic labels

Example ve interaction

True semantic labels

Example v_e interaction

Example v_e interaction

Common abstraction for neutrino experiments

 Although the details of many neutrino physics experiments vary, the majority of them share a common paradigm at a high level.

Shared structure

Event information

True particles

True energy deposits

Detector hits

NuML & PyNuML

- The NuML package is a toolkit for writing physics event records to an HDF5 file format.
 - Hold low-level information such as simulated particles, hits, true energy depositions etc.
 - Generic data structure can be shared across experiments.
 - Common interface with PandAna analysis toolkit (see CHEP 2021 talk).
 - Available as LArSoft package on GitHub.

NuML & PyNuML

- The NuML package is a toolkit for writing physics event records to an HDF5 file format.
 - Hold low-level information such as simulated particles, hits, true energy depositions etc.
 - Generic data structure can be shared across experiments.
 - Common interface with PandAna analysis toolkit (see CHEP 2021 talk).
 - Available as LArSoft package on GitHub.
- The PyNuML package is designed to provide a generic, accessible, efficient and flexible solution for many of the necessary tasks in leveraging ML for particle physics.
 - Define particle ground truth labels for Geant4-simulated particles.
 - · Arrange detector hits into ML objects, ie. graphs, CNN pixel maps, etc.
 - Efficiently preprocess ML inputs in parallel in HPC environments using MPI.
 - Available as <u>Python package on GitHub</u>, or install with pip install pynum!

Summary

- NuGraph2 is a state-of-the-art graph neural network for semantically labelling detector hits in neutrino physics experiments.
 - Model developed and tested in MicroBooNE and DUNE, and designed to be utilised across many neutrino physics detectors.
 - Targeting full particle reconstruction for next generation architecture.
- Standardised process of producing ML inputs from HEP data for general use with NeutrinoML toolkit.
 - Toolkit utilised for MicroBooNE's public data release.
 - Open-source, easy-to-install code packages.
- Next step: train up-to-date architecture on DUNE simulation, and close the inference loop by incorporating output into Art record.

Backup

PyNuML

Art record

(hits, simulated particles, true energy depositions)

NuGraph2

PyNuML

NuGraph2

Object formation

Art record

(hits, simulated particles, true energy depositions)

NuGraph2

Trained model

