
CMSSW Framework Status and Roadmap

Christopher Jones, Matti Kortelainen
Fermilab Frameworks Workshop
5 June 2023



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• CMS’ data processing framework (CMSSW) is multithreaded with Intel oneTBB
– Main, but not only, motivation was to reduce the memory requirement per CPU core
– Initial multithreading development and subsequent efficiency improvements have been 

the main development theme for the framework on the past decade

• Focusing here on high-level overview of select features:
– Data transition system
– Conditions system
– Module categories
– Configuration with python
– Levels of concurrency
– I/O
– Facilities for accelerator use
– Future plans

Introduction and outline

2



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Manages processing of collision data
• Hierarchy

– Event: smallest atomic unit of data
– LuminosityBlock

• Corresponds to art’s SubRun
• Collection of Events
• Corresponds to ~23.3 s of data
• Smallest atomic unit for Intervals of 

Validity in the conditions system
– Run

• Collection of LuminosityBlocks
• Corresponds to several hours of data
• E.g. trigger menu does not change

• Orthogonally: ProcessBlock
– Process-level data storage

3

Data transition system

Event …

LuminosityBlock

… … … … …

Run



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Conditions data: calibrations, geometry, etc
• Data can have many versions that have Interval of Validity (IOV)
• Provides uniform access mechanism to all data constrained by IOV

4

Conditions system

ECal Calibration

Pixel Calibration

ECal Alignment A B

A

A B C D E

Pixel Alignment BA

1 2 3 4 5LuminosityBlocks

Events

C

A

B

A

An “EventSetup” is 
formed from Records 
that have an IOV that 
overlaps with the 
moment in time being 
studied

time



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• Data transition system (similar to art)
– Source: produce the transitions (event, lumi, run), possibly also data products
– Analyzers: can access data products
– Producers: can access and produce data products
– Filters: can access (and produce) data products, and stop the processing of an Event in a 

trigger Path
– Output modules: stores data products into a file

• Conditions system
– Sources: produce the IOV transitions for the Records
– Modules: produce data products into the Records

• Services
– Can register callbacks for the transitions in either system
– Must not affect physics results

Module categories

5



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• CMSSW jobs are configured directly with 
Python
– Powerful, avoids additional configuration 

generator layer

• Can use programming constructs directly 
in the configuration
– ifs, loops, functions, etc
– E.g. argparse to pass command line 

arguments
– Need some policies and conventions to 

avoid overcomplicating the configurations

• Any configuration file can be “dumped” to 
see expanded result of the program

Configuration with Python

6



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• “Thread safe”
– Same object (member function) can be called simultaneously from multiple threads
– C++11 expects operations on const objects to be thread-safe

• Either bitwise const, or internally synchronized

• “Thread friendly”
– Same object can be called from single thread at a time, but different objects can be called 

simultaneously from different threads
• No mutable global state such as writable class-static or file-static variables

• “Thread hostile”
– Same and different objects can be called only from single thread at a time

• E.g. objects do unprotected writes to shared date

• “Thread efficient”
– E.g. single mutex for all functions is safe, but not efficient

Some threading nomenclature (in this talk)

7



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• Several levels for module thread-friendliness
– Module declares its thread-friendliness level by the base class it inherits from

• I.e. each level has its own base class, and a part of the API is specific to the level

Available concurrency levels in CMSSW

8

Tools to monitor how 
efficiently the concurrent 
events are processed by 
the modules

• Several levels for module 
thread-friendliness
– Module declares its 

thread-friendliness level by the 
base class it inherits from
• I.e. each level has its own 

base class, and a part of the 
API is specific to the level



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• “Global”: module is thread safe (art’s “shared” with call async<Event>())
– Framework has exactly one instance of the module whose member functions may be 

called concurrently
– Most efficient

• “Stream”: module is thread friendly (art’s “replicated”)
– Framework has one replica of the module for each concurrent Event (“stream”)
– For each concurrent event, only one of the replicas is used

• I.e. member functions of any one module instance are not called concurrently
– CPU-wise as efficient as “Global”, but uses more memory

• “One”: module is thread hostile (art’s “shared” with call serialize(resources_))
– Framework has one instance of the module, and serializes the calls to the module
– Becomes very inefficient at high thread count
– Necessary ability to deal with e.g. non-thread-safe 3rd party libraries

Levels of module thread-friendliness

9



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• I/O in CMSSW
– Online (DAQ) outputs simple custom file format, where data for each event is serialized 

with ROOT as a single blob
• Converted to a ROOT file in Tier-0

– Offline processing: ROOT files (TTree) for input and output

• XRootD is used to stream data from remote data centers
• Framework uses ROOT dictionaries for reflection also outside of I/O
• On HL-LHC timescale we are working with the ROOT team to make their new 
RNTuple storage format usable in CMSSW for CMS’ data formats
– We have a prototype for RNTuple-using output module for the “analysis ntuple” 

(NanoAOD)
– Expect to result in smaller files and higher threading efficiency on high thread counts

Input and output

10



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• CMS’ general approach has been to
– Implement general mechanisms, that are agnostic of accelerator specifics, in the 

framework
– Implement accelerator specific code as a layer between the framework and user code
– Allow gradual adoption, keep rest of codebase unchanged

• Generic mechanism for “outside of
CMSSW” work called “external worker”
– Allows CPU thread to do other work

• Once external work finishes, new task
added to TBB 

– Used for
• Direct GPU usage via CUDA/Alpaka
• SONIC (ML inference as a service)
• GeantV integration exercise

Compute accelerators

11

CPU

Accelerator

acquire() produce()other work

GPU, FPGA, 
etc

Ev
en

t d
at

a

Callback

CHEP19 doi:10.1051/epjconf/202024505009

https://doi.org/10.1051/epjconf/202024505009


6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• Main use case has been CMS’ High Level Trigger (HLT)
• Some defining characteristics

– Chains of modules that keep the data in GPU memory, minimizing synchronization
– Ability to run a configuration on “any hardware” (“portable configuration”)
– Implemented as a layer on top of the framework

• Framework itself stayed independent of any accelerator technology

• CUDA support was added in 2020
– Used in production at HLT since 2022 data taking

• CUDA code is being migrated to use Alpaka portability library
– Technically have ability to use AMD GPUs, but so far not really tested

• Expect to retire direct CUDA in timescale of a year or so

Direct accelerator usage with CUDA/Alpaka

12



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

• Main theme is efficient use of accelerators
• Ability for asynchronous execution in Conditions system modules

– First use case: copy calibration data from CPU to GPU memory asynchronously
– Framework-level support already exists, Alpaka-level support to be done

• Record information on worker node hardware in the data files
– Stored module provenance information is not good enough to describe the past behavior 

anymore

• Want to automate the ability of deleting temporary Event data products after they 
are no longer needed
– Could be useful especially for low-memory GPUs

• Develop better mechanisms to deal with “memory spaces” of data products
– Want to be able to handle both discrete memory and unified memory cases

• Want to investigate batching of data from multiple Events to reduce overheads

Future work on accelerator support

13



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Spares

14



6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

More details on external worker mechanism

15

• Replace blocking waits with a callback-style solution
• Traditionally the algorithms have one function called by the framework, produce()
• That function is split into two stages

– acquire(): Called first, launches the asynchronous work
– produce(): Called after the asynchronous work has finished

• acquire() is given a reference-
counted smart pointer to the task
that calls produce()
– Decrease reference count when

asynchronous work has finished
– Capable of delivering exceptions

CPU

Accelerator

acquire() produce()other work

GPU, FPGA, 
etc

Ev
en

t d
at

a

Callback


