Office of
Science

CMSSW Framework Status and Roadmap

Christopher Jones, Matti Kortelainen
Fermilab Frameworks Workshop
5 June 2023

Introduction and outline

« CMS’ data processing framework (CMSSW) is multithreaded with Intel oneTBB
— Main, but not only, motivation was to reduce the memory requirement per CPU core

— Initial multithreading development and subsequent efficiency improvements have been
the main development theme for the framework on the past decade

* Focusing here on high-level overview of select features:
— Data transition system
— Conditions system
— Module categories
— Configuration with python
— Levels of concurrency
— 1/O
— Facilities for accelerator use
— Future plans

2% Fermilab

2 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Data transition system

Manages processing of collision data

« Hierarchy
— Event: smallest atomic unit of data

— LuminosityBlock -!! !!!

» Corresponds to art’s SubRun

» Collection of Events

» Corresponds to ~23.3 s of data

» Smallest atomic unit for Intervals of
Validity in the conditions system

— Run

» Collection of LuminosityBlocks

» Corresponds to several hours of data

« E.g. trigger menu does not change

» Orthogonally: ProcessBlock
— Process-level data storage

2% Fermilab

3 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Conditions system

Conditions data: calibrations, geometry, etc
« Data can have many versions that have Interval of Validity (IOV)
» Provides uniform access mechanism to all data constrained by IOV

— ——
ECal Calibration A B C D E
Pixel Calibration A
ECal Alignment A B
Pixel Alignment A B
LuminosityBlocks 1 I E 4 5
Events LT T R T
time

4 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

An “EventSetup” is
formed from Records
that have an IOV that
overlaps with the
moment in time being
studied

2% Fermilab

Module categories

» Data transition system (similar to art)
— Source: produce the transitions (event, lumi, run), possibly also data products
— Analyzers: can access data products
— Producers: can access and produce data products

— Filters: can access (and produce) data products, and stop the processing of an Event in a
trigger Path

— Output modules: stores data products into a file

« Conditions system
— Sources: produce the IOV transitions for the Records
— Modules: produce data products into the Records

« Services

— Can register callbacks for the transitions in either system
— Must not affect physics results

2% Fermilab

5 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Configuration with Python

« CMSSW jobs are configured directly with

« Can use programming constructs directly

6

Python

— Powerful, avoids additional configuration

generator layer

in the configuration
— ifs, loops, functions, etc

— E.g. argparse to pass command line
arguments

— Need some policies and conventions to
avoid overcomplicating the configurations

» Any configuration file can be “dumped” to

see expanded result of the program

import FwWCore.ParameterSet.Config as cms
process = cms.Process("TEST")

process.maxEvents = 100
process.options.numberOfThreads = 4

process.source = cms.Source("PoolSource",
fileNames = cms.untracked.vstring("file:input.root")

)

process.producer = cms.EDProducer ("TestProducer",
value = cms.int32(42)

)

from Some.Package.analyzer_cfi import analyzer
process.analyzer = analyzer.clone(source = "producer")

process.out = cms.OutputModule("PoolOutputModule",
fileName = cms.untracked.string("output.root")

)

process.task = cms.Task(process.producer)
process.path = cms.Path(process.analyzer, process.task)
process.endpath = cms.EndPath(process.out)

2% Fermilab

6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Some threading nomenclature (in this talk)

7

“Thread safe”

— Same object (member function) can be called simultaneously from multiple threads
— C++11 expects operations on const objects to be thread-safe
 Either bitwise const, or internally synchronized

“Thread friendly”

— Same object can be called from single thread at a time, but different objects can be called
simultaneously from different threads

* No mutable global state such as writable class-static or file-static variables
“Thread hostile”
— Same and different objects can be called only from single thread at a time

« E.g. objects do unprotected writes to shared date
“Thread efficient”

— E.g. single mutex for all functions is safe, but not efficient

JE H
3¢ Fermilab
6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Available concurrency levels in CMSSW

Run LuminosityBlock Event Algorithm

modules running event stalled module running
modules ru

nning other multiple modules running external work

e L. « Several levels for module
IR —— thread-friendliness
— ‘ — Module declares its
" | . thread-friendliness level by the
2] S TO?'? to monitor how base class it inherits from
L ' T efficiently the concurrent « l.e. each level has its own
events are processed by base class, and a part of the
| I | | the modules APl is specific to the level

2% Fermilab

8 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Levels of module thread-friendliness

9

“Global”: module is thread safe (art’s “shared” with call async<Event>())

— Framework has exactly one instance of the module whose member functions may be
called concurrently

— Most efficient

“Stream”: module is thread friendly (art’s “replicated”)
— Framework has one replica of the module for each concurrent Event (“stream”)
— For each concurrent event, only one of the replicas is used
» |l.e. member functions of any one module instance are not called concurrently
— CPU-wise as efficient as “Global”, but uses more memory
“One”: module is thread hostile (art’s “shared” with call serialize(resources))
— Framework has one instance of the module, and serializes the calls to the module
— Becomes very inefficient at high thread count
— Necessary ability to deal with e.g. non-thread-safe 3rd party libraries

2% Fermilab

6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Input and output

* 1/0 in CMSSW

— Online (DAQ) outputs simple custom file format, where data for each event is serialized
with ROQOT as a single blob

» Converted to a ROOT file in Tier-0
— Offline processing: ROQT files (TTree) for input and output
XRootD is used to stream data from remote data centers
Framework uses ROOT dictionaries for reflection also outside of /O
On HL-LHC timescale we are working with the ROOT team to make their new
RNTuple storage format usable in CMSSW for CMS’ data formats

— We have a prototype for RNTuple-using output module for the “analysis ntuple”
(NanoAOD)

— Expect to result in smaller files and higher threading efficiency on high thread counts

2% Fermilab

10 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Compute accelerators

« CMS’ general approach has been to

— Implement general mechanisms, that are agnostic of accelerator specifics, in the

framework

— Implement accelerator specific code as a layer between the framework and user code
— Allow gradual adoption, keep rest of codebase unchanged

* (Generic mechanism for “outside of
CMSSW” work called “external worker”
— Allows CPU thread to do other work

* Once external work finishes, new task
added to TBB

— Used for

» Direct GPU usage via CUDA/Alpaka
* SONIC (ML inference as a service)
« GeantV integration exercise

11 6/5/23

Accelerator

o> N etc : C29//
b& | | 6(9
X B %
&7 X
CPU %/ N
‘acquire() | otherwork ! produce() |

..

Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

CHEP19 doi:10.1051/epjconf/202024505009

2% Fermilab

https://doi.org/10.1051/epjconf/202024505009

Direct accelerator usage with CUDA/Alpaka

« Main use case has been CMS’ High Level Trigger (HLT)

« Some defining characteristics
— Chains of modules that keep the data in GPU memory, minimizing synchronization
— Ability to run a configuration on “any hardware” (“portable configuration”)

— Implemented as a layer on top of the framework
* Framework itself stayed independent of any accelerator technology

» CUDA support was added in 2020

— Used in production at HLT since 2022 data taking
« CUDA code is being migrated to use Alpaka portability library

— Technically have ability to use AMD GPUs, but so far not really tested
» Expect to retire direct CUDA in timescale of a year or so

2% Fermilab

12 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Future work on accelerator support

13

Main theme is efficient use of accelerators

Ability for asynchronous execution in Conditions system modules

— First use case: copy calibration data from CPU to GPU memory asynchronously
— Framework-level support already exists, Alpaka-level support to be done
Record information on worker node hardware in the data files

— Stored module provenance information is not good enough to describe the past behavior
anymore

Want to automate the ability of deleting temporary Event data products after they
are no longer needed
— Could be useful especially for low-memory GPUs
Develop better mechanisms to deal with “memory spaces” of data products
— Want to be able to handle both discrete memory and unified memory cases
Want to investigate batching of data from multiple Events to reduce overheads
* "
3¢ Fermilab

6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

Spares

2% Fermilab

14 6/5/23 Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

More details on external worker mechanism

15

Replace blocking waits with a callback-style solution

Traditionally the algorithms have one function called by the framework, produce()
That function is split into two stages

— acquire(): Called first, launches the asynchronous work
— produce(): Called after the asynchronous work has finished

acquire() is given areference- [-
: Accelerator ! :
counted smart pointer to the task . GPU, FPGA, |
that calls produce() &y’i etc N%Q
— Decrease reference count when og\kb/ - \Qf
asynchronous work has finished cPU %/ N
— Capabile of delivering exceptions ‘acquire()| otherwork | produce()
2F Fermilab

6/5/23

Christopher Jones, Matti Kortelainen | CMSSW Framework Status and Roadmap

