
Giuseppe Cerati (FNAL)
FNAL Frameworks Workshop
June 5, 2023

SciDAC4 developments

2023/06/05

Project Goals
• “HEP event reconstruction with cutting edge computing architectures”  

project supported by the DOE SciDAC-4 program
- https://computing.fnal.gov/hepreco-scidac4/; https://www.scidac.gov/

• Collaboration between physicists at Fermilab and computer scientists at UOregon
• Mission: accelerate HEP event reconstruction using modern parallel architectures

• Focus on two areas:
- Novel parallel algorithm for charged particle tracking in CMS
- Pioneer similar techniques for reconstruction in LArTPC detectors

• Goals of the project are the following:
1. Identify key algorithms for the outcome of the experiments that dominate reconstruction time
2. Re-design the algorithms to make efficient usage of data- and instruction-level parallelism
3. Deploy the new code in the experiments’ framework
4. Explore execution on different architectures and platforms

2

https://computing.fnal.gov/hepreco-scidac4/
https://www.scidac.gov/

2023/06/05

Reconstruction for LArTPC 𝜈 experiments
• Charged particles produced in neutrino interactions ionize the

argon, ionization electrons drift in electric field towards anode
planes

• Sense wires detect the incoming charge, producing beautiful
detector data images

• Reconstruction in LArTPC experiments is challenging due to
unknown interaction point, many possible topologies, noise,
contamination of cosmic rays
- Takes O(minutes)/event in MicroBooNE
- ICARUS ~5x bigger, DUNE Far Detector O(100)x bigger

• LArTPC detectors are modular in nature ➔ parallelism!

3
NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

wire

tim
e

offline event reconstruction procedure can be briefly summarized as a series of subsequent
steps:

1. Signal shaping and hit reconstruction: data from each wire is passed through a noise
filter, signal deconvolution, and calibration to translate raw signal pulses to nearly
uniform, unipolar signal pulses on each of the wires. TPC “hits” are identified as
Gaussian-like signals above the baseline readout waveforms, and carry information
on the wire and time of arrival of charge in the detector, as well as an (uncalibrated)
measure of the energy deposited in each hit.

2. Clustering, track and shower reconstruction: hits in each plane of wires are
processed by clustering algorithms which identify hits likely originating from the same
particle. 3D pattern-recognition and tracking algorithms then match these hits and
clusters across the three wire planes in the TPC to identify charged-particle
trajectories (“tracks”), interaction vertices, and showers of electromagnetic particles.

3. Calorimetric reconstruction and Particle Identification: the determination of the
energy release in LAr is performed by charge to energy conversion with correction for
the quenching effect on the ionization charge in LAr and correcting for the charge
loss due to the attachment by electronegative impurities diluted in LAr. Particle
identification is obtained from dE/dx measurement versus range.

Figure 4.​ Typical reconstruction workflow in LArTPC experiments.

MicroBooNE [UBooNE] is the only LArTPC neutrino experiment currently taking data and is
therefore the best reference for state-of-the-art reconstruction algorithms. As of today,
algorithms are not in a crystallized configuration yet, and the MicroBooNE reconstruction
group is in a very active development state, with multiple new solutions being investigated. A
key point to MicroBooNE’s reconstruction effort is that there is no unique way to do
reconstruction: reconstruction algorithms are highly modularized, and alternative algorithms
are used to reconstruct the same objects; the resulting performance depends on the
topology and different analyses make use of products from different algorithms. Algorithms
for shower reconstruction are still in an embryonal development stage [ShowerReco].
Excluding legacy reconstruction algorithms which will be soon deprecated, the typical
reconstruction time in MicroBooNE events is 2-3 minute per event on production machines
at Fermilab. As of today, there is not a single algorithm that is responsible for most of the
reconstruction time; significant contributions come from four algorithms, which we briefly
describe below. Further developments may both decrease (due to optimization) or increase
(due to the introduction of new algorithms) the total processing time.

1. GausHitFinder [HitFinder]: taking as input deconvoluted unipolar wire signal
[Deconv], it finds regions above a given threshold; on each region it performs a
multi-Gaussian fit and extracts the hit time and width.

11

Typical	reconstruction	chain	for	LArTPC experiments

2023/06/05

• Parallelization of Hit Finder Algorithm

4

2023/06/05

Initial Study: Hit Finding

• MicroBooNE: ~8k wires readout at 2 MHz, deconvolved wire signals
are Gaussian pulses
• Hit finding: identify pulses and determine their peak position and width
• It can used to take a significant fraction of the reconstruction workflow
- few percent to few tens of percent depending on the experiment
• Wires (and ROIs) can be independently processed:
- algorithm suitable to demonstrate speedup potential by parallelizing LArTPC reconstruction

5

2023/06/05

Standalone Implementation

• Replicated LArSoft hit finder as standalone code for testing and optimization

• Replaced Gaussian fit based on Minuit+ROOT with a local implementation of
Levenberg-Marquardt minimization
- gradient descent when far from minimum and Hessian minimization when close to it
• implementation based on “Data Reduction and Error Analysis for the Physical Sciences”

- include boundaries on fit parameters for better fit stability

• Early tests showed that standalone implementation is ~8x faster than default
- before optimizations and without any vectorization or multi-threading

6

2023/06/05

Vectorization Results

• Profiling the code (e.g. roofline) shows that most
of the time is still spent in the minimization
algorithm
- number of iterations needed to converge is variable:

difficult to vectorize across multiple hit candidates.
• We choose to vectorize specific loops within the

algorithm, typically across data bins
- main limitations: only a subset of the code is vectorized,

number of bins is same order as vector unit size

• About 2x speedups, both on Skylake Gold (SKL)
and KNL when compiling with icc+AVX-512

7

Roofline analysis

Vectorization performancesample: 𝜈+cosmics

2023/06/05

Multi-threading Results

• In standalone version, implemented using OpenMP with dynamic scheduling
• Best performance achieved with two-level nested parallelization
- parallel for over events
- regions of interest on wires: parallel region with omp for+critical (output synchronization)

• Results show near ideal  
scaling at low thread counts
- speedup increases up to  

30x (95x) for 80 (240) threads  
on Skylake Gold (KNL)

8

sample:  
𝜈+cosmics

SKL KNL

2023/06/05

LArSoft Integration

• Minimization algorithm integrated and used as a plugin in LArSoft
- currently compiled with gcc by default
- testing the Levenberg-Marquardt hit finder in MicroBooNE and ICARUS reconstruction

shows speedups of 12x and 7x respectively (single thread)

• Multi-threading enabled in LArSoft within the hit finder module
- implementation of wire+ROI level parallelization with TBB
- rely on art for event-level multi-threading

• First vectorized and multi-threaded algorithm for LArTPC!

9

2023/06/05

• Multi-threading of “1D” MC ICARUS signal processing sequence

10

2023/06/05

Context: multithreading for production jobs

• art and larsoft provide multithreading capabilities through TBB library
- art multithreading can process concurrently data across events or within the same event

• Grid allocations have total available memory split by CPU cores
• Grid jobs often need slots with large memory, thus getting multiple cores
• Production jobs are however running single-threaded, thus use only one core

• We can achieve significant processing speedups if we are able to exploit
multithreading and increase our core utilization efficiency
- multithreading within the event doesn’t need to load more event data, can exploit unused

cores given the same memory allocation
- target for production jobs is to have efficient multithreading at moderate thread counts

11

2023/06/05

Multithreading implementation in modules

• Signal processing modules in ICARUS are multithreaded:
- MCDecoderICARUSTPCwROI, Decon1DROI, ROIFinder, GausHitFinder
- Credit to T. Usher for most of the work on the first 3 modules!
- We focused on making services thread safe within event boundaries and to finalize the

implementation of the the above modules

• Results in the next slides show scaling results obtained during development
- tested without (default) and with jemalloc library for memory allocations
- not meant to be a “final/optimized” version, goal is to demonstrate functionality

• These modules now run multithreaded in production workflows on the grid

12

https://jemalloc.net/

2023/06/05

Scaling results
• Tested on icarusbuild02, without other ongoing jobs
- not a production environment
• Can achieve up to 4x speedup for the 4 modules that are multithreaded
• Full stage0 processing speedup limited by other time consuming modules
- but some of them may be low hanging fruits for speedups
• Memory increase is overall small, as expected

13

Out of the box, not necessarily optimized/tuned.

CPU time  
speedup

memory usage  
increase

2023/06/05

Scaling of individual modules

14

Out of the box, not necessarily optimized/tuned.

2023/06/05

• Running at HPC

15

2023/06/05

LArTPC Reconstruction on HPC

• Work is ongoing to develop a reconstruction workflow for HPC centers.
- Initial targets are ICARUS 1D signal processing and Theta@ALCF

• Goal is an efficient utilization of HPC resources
- parallel architectures (SIMD and many-cores, also GPUs)
- high bandwidth interconnects between nodes

• Workflow developed in collaboration with HEP-on-HPC SciDAC project
- https://computing.fnal.gov/hep-on-hpc/
- J. Kowalkowski, S. Sehrish, M. Paterno, S. Ali (FNAL), T. Peterka, O. Yildiz (ANL)

16

https://computing.fnal.gov/hep-on-hpc/

2023/06/05

Spack builds

• LArSoft/art migrating away from home-brewed UPS-based tools for release builds
- See e.g. talks at https://indico.fnal.gov/event/51092/, https://indico.fnal.gov/event/51726/

• Targeting modern HPC-friendly tools such as Spack (see spack.readthedocs.io)

• Spack provides a simple way to customize compilation at package level
- icc and AVX-512 are needed for optimal vectorization speedups in hit finder

• A new package, larvecutils, was created containing vectorized code
- right now only MarqFitAlg, but more can be added in the future

• Migration work still ongoing, but building icaruscode releases with Spack is possible!
- still requires manual work to produce a recipe, currently using icaruscode v09_37_01_02p04
- recent releases after cetbuildtools migration, so it may not be difficult to propagate recipe
- thank you to FNAL Spack team: P. Gartung, C. Green, M. Mengel, S. White

17

LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

spack.io

Managing HPC Software Complexity with
Spack

Supercomputing 2019 Full-day Tutorial
November 18, 2018

Dallas, TexasThe most recent version of these slides can be found at:
https://spack-tutorial.readthedocs.io

https://indico.fnal.gov/event/51092/
https://indico.fnal.gov/event/51726/
http://spack.readthedocs.io

2023/06/05

HEPnOS
• HEPnOS is a distributed data service for managing HEP data.
- distributed: available to all nodes on a machine, through memory (not reading files)
- data service: independent of user applications; works with domain concepts (datasets, runs) not artifacts (files)

• Features:
- Accelerates access by retaining data in the system (in memory) throughout analysis process.
- Uses SciDAC Institute technologies to get optimal use of interconnects at ASCR facilities
- Provides for large scale, run-time configurable, parallelism
• global view of data, removes limitations from filesystem

- Supports workflow load balancing across a large machine

• For this workflow what we did is:
- We built a consistent software stack: both ICARUS code and HEPnOS using same compiler and flags
- Implemented the ability to store and load the required data types in HEPnOS
- Developed HEPnOS art input source and output module
• IO capabilities limited to selected data products, not full metadata

- HEPnOS internally uses argobots threads: had to avoid conflicts with TBB by ensuring all argobots calls are from the
same OS thread

18

2023/06/05

Workflow layout

• Running signal processing (S), hit finding (H), and cluster3D+Pandora (P) reconstruction
- S in multi-threaded, H is vectorized and multi-threaded, P is serial

• MPI-wrapper allows to execute an art/LArSoft instance in each rank, running S, H then P
• HEPnOS servers communicate with art/LArSoft via MPI
- Each server supports as many ranks as allowed by memory available on node

• Ongoing tests on Theta with different ranks per node and different threads per rank. Stay tuned!
19

2023/06/05

HEPnOS Preliminary Results

20

Sajid Ali @ CHEP23

https://indico.jlab.org/event/459/contributions/11844/attachments/9474/13732/p2r-CHEP23.pdf
https://indico.jlab.org/event/459/contributions/11290/attachments/9502/14241/CHEP23.pdf

2023/06/05

Bonus Topic: Code Portability

21

M. Kwok @ CHEP23

Several options on the table, with similar performance (although application-dependent).  
Early adoption of one approach can be beneficial for a framework, but would be good to be able to easily change as tools mature.

https://indico.jlab.org/event/459/contributions/11844/attachments/9474/13732/p2r-CHEP23.pdf
http://www.apple.com

2023/06/05

Conclusions

• SciDAC4 projects have been on the forefront of developments in various
areas such as:
- Vectorization and Multithreading
- HPC workflows
- Code portability tools

• Take home messages for framework developments are:
- Optimal vectorization may require specific compilation options
- Memory-intensive workflows best exploit multithreading solutions not requiring more data
• This typically means parallelization within the event. Also, jemalloc help MT performance.

- Object stores can improve scaling at HPC by removing file boundary restrictions
- Code portability solutions are becoming mature and need to be supported

22

2023/06/05

Backup

23

2023/06/05

Validation of Algorithm Output
• Physics output validated against original algorithm
- one to one comparison of hit parameters shows little difference

• Algorithm is fully efficient across all planes both in  
MicroBooNE and ICARUS
- detectors with large differences in signal-to-noise ratio
- waveforms with low S/N  

need fit parameters limits 

24

0.02− 0.015− 0.01− 0.005− 0 0.005 0.01 0.015 0.02
Default Hit Time - Marquardt Hit Time (Ticks)

10

210

310

410

510

 N
um

be
r

of
 E

ve
nt

s

98% of hit time  
within 0.02 of  
original result

2023/06/05

Services and Multithreading
• Art does not allow to run multithreaded if services are not thread safe and

consequently marked as “SHARED”
- see this talk by Kyle for details

• Currently in ICARUS stage0_run2_icarus_mc.fcl the following services are
loaded, and only the first two are LEGACY (not SHARED)
- SIOVChannelStatusService, SIOVDetPedestalService, DetectorClocksServiceStandard,

DetectorPropertiesServiceStandard, SignalShapingICARUSService,
IcarusGeometryHelper, ICARUSChannelMap, LArPropertiesServiceStandard

• Scisoft team has been working on larsoft services with the goal of making
them thread safe. Work is however taking significant time as changes are
non-trivial and require to be propagated to downstream experiment code

25

https://indico.fnal.gov/event/23808/contributions/74064/attachments/46283/55621/larsoft-coordination-2020-03-24.pdf

2023/06/05

However…

• Scisoft team is targeting thread safety both across and within events
• Since we only care about the latter, the situation is significantly simpler:
- SIOVChannelStatusService and SIOVDetPedestalService access information from a DB
- Thread safety within events only requires that the DB access is done at event boundaries

or anyways only once per event
- This can be enforced and we can make the service SHARED
• using the “EnsureOnlyOneSchedule” functionality (link to class)
• adding an std::mutex in the DBUpdate function

• Development merged in larevt in Nov. 2022

26

https://github.com/LArSoft/larcore/blob/develop/larcore/CoreUtils/EnsureOnlyOneSchedule.h

