U.S. DEPARTMENT OF

2t Fermilab {@ENERGY | scorce

Science

-

2 B v -
| T 1 - -
B 0 T e T e

3 R i“;:‘ ;v ¥
L‘

s

SciDAC4 developments

Giuseppe Cerati (FNAL)

FNAL Frameworks Workshop
June 5, 2023

Project Goals

* “HEP event reconstruction with cutting edge computing architectures”
project supported by the DOE SciDAC-4 program

- https://computing.fnal.gov/hepreco-scidac4/; https://www.scidac.gov/
* Collaboration between physicists at Fermilab and computer scientists at UOregon
* Mission: accelerate HEP event reconstruction using modern parallel architectures

* Focus on two areas:
- Novel parallel algorithm for charged particle tracking in CMS
- Pioneer similar techniques for reconstruction in LArTPC detectors

* Goals of the project are the following:
1. Identify key algorithms for the outcome of the experiments that dominate reconstruction time
2. Re-design the algorithms to make efficient usage of data- and instruction-level parallelism
3. Deploy the new code in the experiments’ framework
4. Explore execution on different architectures and platforms

2% Fermilab
2 2023/06/05

https://computing.fnal.gov/hepreco-scidac4/
https://www.scidac.gov/

Uu vy V wire plane waveforms

Reconstruction for LArTPC v experiments

» Charged particles produced in neutrino interactions ionize the i \ 7
argon, ionization electrons drift in electric field towards anode cavo S
planes

* Sense wires detect the incoming charge, producing beautiful & 7
detector data images i

* Reconstruction in LArTPC experiments is challenging due to 7l —,

unknown interaction point, many possible topologies, noise,
contamination of cosmic rays

- Takes O(minutes)/event in MicroBooNE

- ICARUS ~5x bigger, DUNE Far Detector O(100)x bigger

* LArTPC detectors are modular in nature = parallelism!

uu

Track
| ' Reco
Raw | Signal Hit . a |
— > al — — : : Particle | : Event
Data - | Shaping Reco Clustering : Calorimetry — d Building
| Shower |7 | \Y | P
Reco | : _ }IB(m\AJ<Z

e °
nnn

...

3 2023/06/05 Typical reconstruction chain for LArTPC experiments

nnn

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

 Parallelization of Hit Finder Algorithm

2% Fermilab
4 2023/06/05

[[| [| [| [|
I n I t I a I St u d y - H I t F I n d I n g Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures
[|

Sophie Berkman (Fermilab), Giuseppe Cerati (Fermilab), Kyle Knoepfel (Fermilab), Marc Mengel (Fermilab), Allison Reinsvold
Hall (Fermilab) et al. (Jul 1, 2021)

Published in: JINST 17 (2022) 01, PO1026 - e-Print: 2107.00812 [physics.ins-det]

* MicroBooNE: ~8k wires readout at 2 MHz, deconvolved wire signals
are Gaussian pulses

* Hit finding: identify pulses and determine their peak position and width

* It ean used to take a significant fraction of the reconstruction workflow
- few percent to few tens of percent depending on the experiment

* Wires (and ROIs) can be independently processed:
- algorithm suitable to demonstrate speedup potential by parallelizing LArTPC reconstruction

0'40
< 30
=20

10

|

IIII\IIIIIIIII‘IIIILLLLI}

2500 2600 2700 2800 2900 3000 __ 2eFermilab
5 2023/06/05 t [ticks]

Standalone Implementation

* Replicated LArSoft hit finder as standalone code for testing and optimization

* Replaced Gaussian fit based on Minuit+ROOT with a local implementation of
Levenberg-Marquardt minimization

- gradient descent when far from minimum and Hessian minimization when close to it
* implementation based on “Data Reduction and Error Analysis for the Physical Sciences”

- Include boundaries on fit parameters for better fit stability

 Early tests showed that standalone implementation is ~8x faster than default
- before optimizations and without any vectorization or multi-threading

2% Fermilab
6 2023/06/05

Roofline analysis

Vectorization Results s O
» Profiling the code (e.g. roofline) shows that most e s
of the time is still spent in the minimization < L Q veurisa
algorithm o
- number of iterations needed to converge is variable: i o 80 © vt ©_ 5o Spets e 7330+ T 2
difficult to vectorize across multiple hit candidates. Standalone Hit Finder

w
T

* We choose to vectorize specific loops within the
algorithm, typically across data bins

- main limitations: only a subset of the code is vectorized,
number of bins iIs same order as vector unit size

BskL PBKNL

N
N %))
T T

-
(&)
1

—
I

» About 2x speedups, both on Skylake Gold (SKL)
and KNL when compiling with icc+AVX-512

Speedup Relative To No Vectorization

O
4

32 bit 128 bit 256 bit 512 bit 512 bit
w/o pragma w/ pragma w/pragma w/pragma w/o pragma

7 2023/06/05 sample: v+cosmics Vectorization performance

Multi-threading Results

* In standalone version, implemented using OpenMP with dynamic scheduling
* Best performance achieved with two-level nested parallelization

- parallel for over events

- regions of interest on wires: parallel region with omp for+critical (output synchronization)

Thread Scaling on Skylake Gold

* Results show near ideal £ Skl
scaling at low thread counts ™}
25

- speedup increases up to :
30x (95x) for 80 (240) threads =
on Skylake Gold (KNL) 150

—e— N, Wire=1
—e— N, Event=1
51 N,,Event=10

T B
100

120

8 2023/06/05 N, Event x N, Wire

Thread Scaling on KNL

o
- |
T
g100- KN L .
Q|
)
80—
60—
40—
i —e— N, Wire=1
i —e— N, Event=1 Samp|e:
20— —e— N, Event=5
i N, Event=10 '
- o NjEvenizo V+COSMICS
| | | | I | .| I | | | | |
50

100

150 200 250
N, Event x N, Wire

LArSoft Integration

» Minimization algorithm integrated and used as a plugin in LArSoft

- currently compiled with gcc by default

- testing the Levenberg-Marquardt hit finder in MicroBooNE and ICARUS reconstruction
shows speedups of 12x and 7x respectively (single thread)

» Multi-threading enabled in LArSoft within the hit finder module

- implementation of wire+ROI level parallelization with TBB
- rely on art for event-level multi-threading

* First vectorized and multi-threaded algorithm for LArTPC!

2= Fermilab
9 2023/06/05

» Multi-threading of “1D” MC ICARUS signal processing sequence

2= Fermilab
10 2023/06/05

Context: multithreading for production jobs

» art and larsoft provide multithreading capabilities through TBB library
- art multithreading can process concurrently data across events or within the same event

 Grid allocations have total available memory split by CPU cores
 Grid jobs often need slots with large memory, thus getting multiple cores
* Production jobs are however running single-threaded, thus use only one core

* We can achieve significant processing speedups if we are able to exploit
multithreading and increase our core utilization efficiency

- multithreading within the event doesn’t need to load more event data, can exploit unused
cores given the same memory allocation

- target for production jobs is to have efficient multithreading at moderate thread counts

2= Fermilab
11 2023/06/05

Multithreading implementation in modules

» Signal processing modules in ICARUS are multithreaded:
- MCDecoderlICARUSTPCwROI, Decon1DROI, ROIFinder, GausHitFinder
- Credit to T. Usher for most of the work on the first 3 modules!

- We focused on making services thread safe within event boundaries and to finalize the
implementation of the the above modules

* Results in the next slides show scaling results obtained during development
- tested without (default) and with jemalloc library for memory allocations
- not meant to be a “final/optimized” version, goal is to demonstrate functionality

* These modules now run multithreaded in production workflows on the grid

2= Fermilab

12 2023/06/05

https://jemalloc.net/

Scaling reSUH:S Out of the box, not necessarily optimized/tuned.

 Tested on icarusbuild02, without other ongoing jobs
- nhot a production environment

» Can achieve up to 4x speedup for the 4 modules that are multithreaded

* Full stageO processing speedup limited by other time consuming modules
- but some of them may be low hanging fruits for speedups

* Memory increase is overall small, as expected

SignalProcess Peak resident

g
o

| —— default I —— default
jemalloc e ~ 120 jemalloc

W
wn

w
o
'

CPU time
speedup

115 - memaory usage
110 - Increase

ease wrt default N

£ 105 -

Speedup relative to default N=1
N
v

— v (]
o v o
\\
Mem

100 -

2= Fermilab
13 2023/06/05

Scaling Of individual mOdU|eS Out of the box, not necessarily optimized/tuned.

MCDecoderlICARUSTPCwWROI Deconl1DROI

5.0 -
- default ()

45 4 — jemalloc

| = default
- jemalloc

1
1

= =2 54
- B
= =
o o
= o 4 -
8 8
by @
= =
o = 3-
w w
Q. Q.
= =
° T 2 -
Db w
Qv @
Q. Q. —
(¥a) (¥a)
1 -
2 4 6 8 10 12 14 16 2 4 6 8 1 12 14 16
N threads N threads
ROIFinder GausHIitFinder
250 - - default //' 10 A — default
- - jemalloc — — - jemalloc
2 225 - z g
- -
o o
% 2.00 A -
o o
8 o 6 -
v 175 1 y
= =
g 150 A ﬁ 4 -
Q. Q.
3 125 - =
Qv Db
Qv Qv
o o 2 -
Vi 100 - wn
0-75 L I L] L] L L L] L] L] L] L L L L] L] L
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
N threads N threads

2= Fermilab

14 2023/06/05

* Running at HPC

2= Fermilab
15 2023/06/05

LArTPC Reconstruction on HPC

* Work is ongoing to develop a reconstruction workflow for HPC centers.
- Initial targets are ICARUS 1D signal processing and Theta@ALCF

» Goal is an efficient utilization of HPC resources
- parallel architectures (SIMD and many-cores, also GPUs)
- high bandwidth interconnects between nodes

» Workflow developed in collaboration with HEP-on-HPC SciDAC project
- https://computing.fnal.gov/hep-on-hpc/
- J. Kowalkowski, S. Sehrish, M. Paterno, S. Ali (FNAL), T. Peterka, O. Yildiz (ANL)
a¢ Fermilab

16 2023/06/05

https://computing.fnal.gov/hep-on-hpc/

Spack builds

Spack
* LArSoft/art migrating away from home-brewed UPS-based tools for release builds
- See e.g. talks at https://indico.fnal.gov/event/51092/, https://indico.fnal.gov/event/51726/

* Targeting modern HPC-friendly tools such as Spack (see spack.readthedocs.io)

* Spack provides a simple way to customize compilation at package level
- icc and AVX-512 are needed for optimal vectorization speedups in hit finder

* A new package, larvecutils, was created containing vectorized code
- right now only MargFitAlg, but more can be added in the future

* Migration work still ongoing, but building icaruscode releases with Spack is possible!
- still requires manual work to produce a recipe, currently using icaruscode v09_37_01_02p04

- recent releases after cetbuildtools migration, so it may not be difficult to propagate recipe
- thank you to FNAL Spack team: P. Gartung, C. Green, M. Mengel, S. White

2= Fermilab
17 2023/06/05

https://indico.fnal.gov/event/51092/
https://indico.fnal.gov/event/51726/
http://spack.readthedocs.io

HEPNOS

 HEPNnOS is a distributed data service for managing HEP data.
- distributed: available to all nodes on a machine, through memory (not reading files)
- data service: independent of user applications; works with domain concepts (datasets, runs) not artifacts (files)

* Features:
- Accelerates access by retaining data in the system (in memory) throughout analysis process.
- Uses SciDAC Institute technologies to get optimal use of interconnects at ASCR facilities
- Provides for large scale, run-time configurable, parallelism
* global view of data, removes limitations from filesystem
- Supports workflow load balancing across a large machine

* For this workflow what we did is:
- We built a consistent software stack: both ICARUS code and HEPnOS using same compiler and flags
- Implemented the ability to store and load the required data types in HEPnOS
- Developed HEPNQOS art input source and output module
* |O capabilities limited to selected data products, not full metadata

- HEPNnOS internally uses argobots threads: had to avoid conflicts with TBB by ensuring all argobots calls are from the
same OS thread _
af Fermilab

18 2023/06/05

Workflow layout

signal
generator

in rank 0, make
the two queues:

“rawraw” and
llh itS”

For each event,
push a EID produce
into the “rawraw”
queue.

This is likely going
to be integrated
directly into the
loader.

pop EID from “rawraw”

get event EID

/

-~

push EID to “hits”

HEPNnOS

pop EID from “hits”
get event EID

e

Y

art process

" ™\ ROOT file

follows

Workflow task /

J

J

products are put into HEPnOS at
each of SH and P.

* Running signal processing (S), hit finding (H), and cluster3D+Pandora (P) reconstruction
- S in multi-threaded, H is vectorized and multi-threaded, P is serial

* MPIl-wrapper allows to execute an art/LArSoft instance in each rank, running S, H then P
* HEPNnOS servers communicate with art/LArSoft via MPI

- Each server supports as many ranks as allowed by memory available on node

* Ongoing tests on Theta with different ranks per node and different threads per rank. Stay tuned!

19 2023/06/05

2t Fermilab

HEPNOS Preliminary Results

2& Fermilab
Background: File-based workflows for grid-computing

« Current workflow uses a file-based workflow suited for grid-computing:
— Input is a set of files, each containing ~30 events, ~10-20 Gb (for ICARUS).
— Run each task (set of analysis modules) in the analysis pipeline as a process.
— Size of a task is limited by available time, memory, disk space for output files.
— Use files to pass the results between tasks.

« |ICARUS uses the art framework to analyze events. Each art instance can concurrently
process multiple events (each harnessing multiple-threads).

« Typically, one art process runs on a node and analyzes all the events in a file, producing one
output file containing the data products produced by the analysis and ones produced by

Sajid Ali @ CHEP23

preceding analysis.

* Thus, we typically have fewer art processes than files!

2 5/11/2023 Sajid Ali for SGDAC4 HEPonHPC project | CHEP 2023 © ENERGY e Argonne ®

ranks.

20 2023/06/05

9 5/11/2023

« Used MPI to launch multiple art
processes.

Preliminary evaluation

 Used 1 KNL node on Theta, with 64
(x86_64) cores for the analysis and 1
KNL node as the server for the
HEPNOS workflow.

10"

10

Time in seconds
w

* We observe a scaling efficiency of 75% o
at 10 MPI ranks and 66% at 15 MPI

10
0 5 10 15 20 25

Number of MPI ranks

Sajid Ali for SciDAC4 HEPonHPC project | CHEP 2023

2% Fermilab

method
o File-based
o HEPNOS

30

U.S. DEPARTMENT OF Ofﬁce Of = . -y University of
© ENERGY o2 Argonne & (Q &icinan e B

https://indico.jlab.org/event/459/contributions/11844/attachments/9474/13732/p2r-CHEP23.pdf
https://indico.jlab.org/event/459/contributions/11290/attachments/9502/14241/CHEP23.pdf

Bonus Topic: Code Portability
M. Kwok @ CHEP23

Portability: Software landscape HEP-CCE (| GPU Results - NVIDIA
* Rapidly changing ~O(month) portability solutions * p2r’'s measurement more sensitive changes to kernel execution
- New features/compiler supports/New backend - p2z measurement is sensitive to overheads related to data movement
* Different approaches: » Kokkos and Alpaka both managed to produce close-to-native performance
- Compiler pragma-based approach * Unclear what is causing the slowdown in SYCL/std::par in p2r versions
- Libraries - Profiling shows significant branching in SYCL version
- Language extension
 HEP-CCE: Joint effort of major U.S. National labs involved in HEP or- NVIDIA GPU (A100 02z: NVIDIA GPU (V100)
- Investigate different portability solutions in HEP context p<r- ()
Kernel-only Data movement + kernel
’a‘lon'I""I""I""I"" ’UT 'I""I""2Ib'"h'll"("'l""I"
) B z benchmar
Software 3 p2r benchmark: 3 'FFested on Summit node V100 GPU -
g ol Tested on A100 g
CUDA | Kokkos | SYCL HIP | OpenMP | alpaka | std::par 5 107F CUDA-11.6,bsize=32 - = 10°F E
£ [100.0% 87.73% 100.3 % 5 £ £100.0% gggp o, 98.64 % 96.89 % 97.76 %
NVIDIA intel/llvm S S | 44.1 % A S
GPU compute-cpp a Gce, nd _g 109k _g
AMD openSYCL . e = : =
Hardware GPU intetivm PS¢] : ! |
Intel GPU i:g‘;’,‘,f; eaf,;: :;:tz\,;pe l"::)ln?;‘;gpl prototype oneapi::dpl 108§ 9 65 %
oneAPl .. yip-cPu Stay tuned
x86 CPU computoapp Funtime “GELSE tomorrow for!
e kil : 107 CUDA Alpak Kokk SYCL std:par(nvc++) 10°
FPGA vie Xita | fScompirsl| (BT Vi HEP-CCE result P "% portability Technologies CUDA™ Alpaka Kokkos f’,ﬁ?,cf‘;“ OperP4 OpenACC
etc) Portability Technologies
3¢ Fermilab 3¢ Fermilab
3 05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23 10 05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Several options on the table, with similar performance (although application-dependent).
Early adoption of one approach can be beneficial for a framework, but would be good to be able to easily change as tools mature.

2= Fermilab

21 2023/06/05

https://indico.jlab.org/event/459/contributions/11844/attachments/9474/13732/p2r-CHEP23.pdf
http://www.apple.com

Conclusions

* SCIDAC4 projects have been on the forefront of developments in various
areas such as:
- Vectorization and Multithreading
- HPC workflows
- Code portabillity tools

» Take home messages for framework developments are:
- Optimal vectorization may require specific compilation options

- Memory-intensive workflows best exploit multithreading solutions not requiring more data
* This typically means parallelization within the event. Also, jemalloc help MT performance.

- Object stores can improve scaling at HPC by removing file boundary restrictions
- Code portability solutions are becoming mature and need to be supported

2% Fermilab
22 2023/06/05

Backup

2= Fermilab
23 2023/06/05

Validation of Algorithm Output

* Physics output validated against original algorithm
- one to one comparison of hit parameters shows little difference

» Algorithm is fully efficient across all planes both in
MicroBooNE and ICARUS
- detectors with large differences in signal-to-noise ratio

- waveforms with low S/N i
need fit parameters limits

—

o
i
|

-
)
I I 1T TTTH I T 1T I 1T 1T I 1T T

98% of hit time
within 0.02 of
original result

—

o
=
|

Number of Events
=

-
e
¢

Ll Ll | | L1 1 | L1 1 1 | L1 1 | | L1 1 | | Ll Ll | | L1 1 | L1 1 1 '+. Hit EffiCiency -

-0.02 -0.015 0.01 0005 0 0.005 001 0.015 0.02
Default Hit Time - Marquardt Hit Time (Ticks)

2% Fermilab
24 2023/06/05

Services and Multithreading

* Art does not allow to run multithreaded if services are not thread safe and
consequently marked as “SHARED”
- see this talk by Kyle for detalls

 Currently in ICARUS stageO_run2_icarus_mc.fcl the following services are
loaded, and only the first two are LEGACY (not SHARED)

- SIOVChannelStatusService, SIOVDetPedestalService, DetectorClocksServiceStandard,
DetectorPropertiesServiceStandard, SignalShapinglCARUSService,
lcarusGeometryHelper, ICARUSChannelMap, LArPropertiesServiceStandard

* Scisoft team has been working on larsoft services with the goal of making
them thread safe. Work is however taking significant time as changes are

non-trivial and require to be propagated to downstream experiment code

2% Fermilab
25 2023/06/05

https://indico.fnal.gov/event/23808/contributions/74064/attachments/46283/55621/larsoft-coordination-2020-03-24.pdf

However...

* Scisoft team is targeting thread safety both across and within events

» Since we only care about the latter, the situation is significantly simpler:
- SIOVChannelStatusService and SIOVDetPedestalService access information from a DB

- Thread safety within events only requires that the DB access is done at event boundaries
or anyways only once per event

- This can be enforced and we can make the service SHARED

* using the “EnsureOnlyOneSchedule” functionality (link to class)
* adding an std::mutex in the DBUpdate function

* Development merged in larevt in Nov. 2022

2t Fermilab

26 2023/06/05

https://github.com/LArSoft/larcore/blob/develop/larcore/CoreUtils/EnsureOnlyOneSchedule.h

