
art in artdaq
Eric Flumerfelt, for the artdaq team
Frameworks Workshop
05 June 2023

Since artdaq version 3, art is started as a subprocess (fork/exec) by the artdaq
system. These “companion art processes” are fed events via shared memory and
custom input and output modules are used to decode and encode art events stored in
artdaq Fragments.
artdaq contains library code co-developed with the artists that handles the actual
conversion of art Events from and to Fragments, and handles the necessary pieces of
art initialization such as process history and parameter set registry. We generally refer
to this library code as “art goo” due to the opaqueness of this code.

How artdaq uses art

6/5/23 Presenter | Presentation Title or Meeting Title2

Our shared memory interactions are isolated to the ArtdaqSharedMemoryService,
which provides artdaq::Fragment objects to the ArtdaqInput implementation code.
We also have an ArtdaqFragmentNamingService, which translates the numeric
Fragment type ID field to a string suitable for the art instance names for the Fragment
products stored in an art Event.

How artdaq uses art: Services

6/5/23 Presenter | Presentation Title or Meeting Title3

For “online monitoring” we have a second set of input and output modules which
allow two art processes to communicate directly with one another (the artdaq
Dispatcher starts a “companion” art process when connected to from the “monitor” art
process; this allows pre-filtering to be performed before the “companion” art process
transfers data, potentially over the network, to the “monitor” process).

How artdaq uses art: Online Monitoring

6/5/23 Presenter | Presentation Title or Meeting Title4

artdaq provides a near-copy of RootOutput with a few DAQ-specific customizations.
RootDAQOut uses POSIX system calls to ensure that written data does not persist in
buffer cache.
Several analyzer modules are provided by artdaq for use in DAQ systems, they read
Fragments in the art events and look for empty events, missing data, and other DAQ-
related issues.
artdaq currently maintains HDF5-based example input and output modules
(https://github.com/art-daq/artdaq_demo_hdf5), though we do not believe that they
are currently used by anyone. These produce and consume “raw data only” HDF5
files (Fragments and Event Headers only, no history or provenance information).

How artdaq uses art: Modules

6/5/23 Presenter | Presentation Title or Meeting Title5

https://github.com/art-daq/artdaq_demo_hdf5

Currently, artdaq is responsible for the maintenance of the art Event serialization and
deserialization code (“art goo”), and on occasion this has led to very subtle and
difficult to diagnose issues when the internals of the art framework change.
It would be better if art provided a set of framework functions which use a standard
flat data format (e.g., TBufferFile) which the artdaq code could then use to construct
art Events from the data stored in Fragments and create Fragments from already-
serialized art Events.
If this is not possible, it would at least be helpful if the artists continue to provide
sufficient warning whenever framework internals change in a way that might disrupt
our “art goo”, and possibly assist in developing sandboxed unit test cases that could
quickly identify potential issues.

artdaq’s “stretch goal” for art

6/5/23 Presenter | Presentation Title or Meeting Title6

Our usage of art is possibly unique in that we do not use a file-based interface, which
leads to our somewhat unusual method of communicating with and between art
processes. Our current solutions are dependent on ROOT for providing the
serialization and deserialization methods (via TBufferFile) for both events and art
process initialization (things like history, process registry, and more).

artdaq also heavily uses the plugin facility provided by cetlib and has MessageFacility
endpoints defined in artdaq_core and artdaq_mfextensions. These framework pieces
support the basic functionality of artdaq.

Summary

6/5/23 Presenter | Presentation Title or Meeting Title7

Backup slides

6/5/23 Presenter | Presentation Title or Meeting Title8

Reminder that artdaq is a data acquisition framework developed and
maintained withing CSAID. It is used by multiple experiments at Fermilab,
including Mu2e, ICARUS, and SBND.
It uses art for optional event filtering/transformation, and for writing raw data
on disk in art/ROOT format. Etc.

Introduction

6/5/23 Presenter | Presentation Title or Meeting Title9

Reminder of data flow in artdaq

6/5/23 Presenter | Presentation Title or Meeting Title10

Board
Reader

Board
Reader

Board
Reader

Event
Builder

Event
Builder

Event
Builder

Data
Logger

Data
Logger

Data
Dispatcher

Online
Monitoring

• Some stages are optional (e.g. DL)
• Connection details are highly configurable
• Data transfers between stages in artdaq downstream of BRs use the

artdaq::Fragment class

Contents of artdaq::Fragment change downstream

6/5/23 Presenter | Presentation Title or Meeting Title11

Board
Reader

Board
Reader

Board
Reader

Event
Builder

Event
Builder

Event
Builder

Data
Logger

Data
Logger

Data
Dispatcher

Online
Monitoring

• Initial contents are raw data from electronics (plus artdaq-added header)
• Once the data has been touched by art, the payload of the

artdaq::Fragments becomes serialized art/ROOT objects

Separate art processes at EB, DL, Disp stages…

6/5/23 Presenter | Presentation Title or Meeting Title12

Board
Reader

Board
Reader

Board
Reader

Event
Builder

Event
Builder

Event
Builder

Data
Logger

Data
Logger

Data
Dispatcher

Online
Monitoring

EB artdaq
Process

EB art
Process

Shared memory
artdaq::Event

ArtdaqInput
• art input source reads Fragments and determines if they contain a

serialized art event, reconstituting it if so. If they are data fragments, then it
creates a new art event to hold them. (This gives us the flexibility to have
systems like Mu2e where there are multiple “layers” of
EventBuilders…events which pass the filtering done in the first layer then
request CRV data which is added to the events)

BR -> (?:EB -> EB art (ArtdaqInput & RootNetOutput))+ -> DL -> DL art
(ArtdaqInput & RootDAQOut & RootNetOutput) -> DI -> DI art (ArtdaqInput &
TransferOutput) -> OM art (TransferInput)

Input and output modules inside artdaq art processes

6/5/23 Presenter | Presentation Title or Meeting Title13

