
Cetmodules and Spack-at-FNAL in 2023

Chris Green, FNAL

2023-06-06



Overview

The current state of Cetmodules
Philosophy

Differences with cetbuildtools

Support for modern CMake paradigms

Building with Spack

UPS -> Spack at FNAL
Why?

Migration philosophy

Current status

Remaining hurdles

2/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



Cetmodules: philosophy

No inherent dependence on UPS.

Basic backward compatibility with cetbuildtools.
cetbuildtools 8+ is a (very) thin wrapper around Cetmodules.

Basic migration of user code should be easy; changes to support building with Spack

should be adiabatic without affecting UPS-based builds.

Support modern (CMake >=3.0) paradigms.

Facilitate handling of transitive dependencies.

Dependent packages need not use Cetmodules.

3/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



Cetmodules: cf cetbuildtools

Deprecation of reliance on GLOB (hysteresis avoidance):
art_make() vs art_dictionary(), art_make_library(), build_plugin().

Targets vs CMake/environment variables.

Improved plugin handling:
Generated CMake plugin functions with configure suffix, dependencies, etc.

(e.g. build_frobnicator_tool()) available to dependents.

Separates plugin implementation and registration units into separate libraries to avoid

ODR violation.

Prevents linking to registration libraries and non-linkable plugin implementations (e.g. art

modules).

4/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



Cetmodules: cf cetbuildtools

More flexible/automatic generation of CMake config files for use by dependents:
Much better handling of transitive dependencies: build-only vs link vs header-propagated

dependencies.

New find_package() keyword: EXPORT.

Exportable “Project Variables.”

In the absence of environment variables from UPS, relocatability handled with

Generation/use of CMakePresets.cmake to duplicate configuration from product_deps

when not using UPS, setup_for_development.

5/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



Cetmodules: modern CMake paradigms

Targets, targets, scoped::targets!

No-library (INTERFACE) targets for fine-grained management of header-induced

dependencies.

No-link (MODULE) plugin libraries.

Object-code sharing between SHARED and STATIC libraries built from the same source

(OBJECT “libraries”).

More details: “new” CMake concepts in Cetmodules.

6/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023

https://indico.fnal.gov/event/51726/contributions/227304/attachments/148880/191465/Cetmodules2_2021-11-02.pdf


Cetmodules: implications for Spack

Semi-automatic adiabatic migration path away from UPS-isms.

Intelligent dependency reduction—minimal header-induced dependencies (e.g. via

IWYU), automated transitive dependencies—simplifies Spack recipes.

Dependency version choices delegated to Spack recipes/concretizer.

7/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023

https://indico.fnal.gov/event/53302/contributions/234978/attachments/152352/197229/Cetmodules_etc_2022-02-22.pdf
https://include-what-you-use.org/


UPS -> Spack at FNAL: why?

UPS is older1 than my A-Levels2: one (1) person remaining at the lab who

understands/remembers the UPS source code well enough to maintain it.

LD_LIBRARY_PATH (and variants) no longer viable as a universal system for maintaining

binary package relocatability (e.g. MacOS/SIP).

High overhead for package version updates:
Dependency versions pegged in table file -> error prone.

Manual table file updates, combinatorics.

Build instructions are not defined by UPS (though see ssibuildshims).

1UPS UNIX™ Product Support FERMILAB-CONF-91/174
2a.k.a. High School Diploma.

8/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023

https://s3.cern.ch/inspire-prod-files-8/8cee9fd8c06a92ebb9d627a5e88a874b


UPS -> Spack at FNAL: migration philosophy

Compatibility:
Generate table files to allow use as a UPS product.

Allow some use of pre-built UPS products as externals in Spack builds.

Maximal use of relocatable pre-built binaries in Spack build caches.

Reproducibility: produce configuration files describing software distribution bundles a

la buildcfg files for buildFW.

Flexibility: allow for locally-built distributions with different versions (e.g. Geant4).

Ease of use: turnkey installation of vetted Spack versions and scripted installation of

distributions.

Allow for multi-package software development in the context of Spack-based builds.

9/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



UPS -> Spack at FNAL: current status

Several experiments using ad hoc Spack-built software on HPC (e.g. ICARUS, DUNE).

Scripted build (interactively or via Jenkins) of a sequence of automatically-generated

distribution configurations.

Mu2e distribution based on art-suite 3.13.01 has been built successfully with GCC

12.2.0, C++17 (e26), including Geant4 10.7.4 with Qt-based visualization (upcoming

workshop).

AlmaLinux 9 support in progress.

10/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023



UPS -> Spack at FNAL: remaining hurdles

Minimize unwanted rebuilds due to minor recipe changes (Spack limitation).

Minimize reliance on system packages for grid-based production (X11).

Straightforward support of multiple platforms, compilers.

CI.

Development.

11/11 2023-06-06 | Cetmodules and Spack-at-FNAL in 2023


