
LArSoft and frameworks

Erica Snider
June 6, 2023
Fermilab Frameworks Workshop

Erica Snider LArSoft and event processing frameworks

• A Collaboration

A reminder: what is LArSoft?

2

External software
projects

Experiments, laboratories, software projects collaborating
to produce shared, detector-independent software for
LArTPC simulation, reconstruction and analysis

Erica Snider LArSoft and event processing frameworks

• A Collaboration
• A body of shared software

A reminder: what is LArSoft?

3

External software
projects

Algorithms, tools and utilities for the simulation,
reconstruction and analysis of LArTPC data
developed, contributed, maintained by the experiments

https://github.com/orgs/LArSoft

https://github.com/orgs/LArSoft

Erica Snider LArSoft and event processing frameworks

• A Collaboration
• A body of shared software
• Fermilab “project” team (SciSoft)

A reminder: what is LArSoft?

4

LArSoft wiki
Supports sharing of software by
+ owning architecture, infrastructure, coding guidelines
+ providing user and developer support,

software expertise, release management,
change management, (shared) documentation, etc.

+ hosting user / developer workshops

Oversight by the experiment spokes via “Steering Group”

LArSoft.org

Issue tracker

https://larsoft.github.io/
https://larsoft.org
https://cdcvs.fnal.gov/redmine/projects/larsoft/issues

Erica Snider LArSoft and event processing frameworks

• A Collaboration
• A body of shared software
• Fermilab “project” team (SciSoft)

A reminder: what is LArSoft?

5

LArSoft wiki
Supports sharing of software by
+ owning architecture, infrastructure, coding guidelines
+ providing user and developer support,

software expertise, release management,
change management, (shared) documentation, etc.

+ hosting user / developer workshops

Oversight by the experiment spokes via “Steering Group”

LArSoft.org

Issue tracker

https://larsoft.github.io/
https://larsoft.org
https://cdcvs.fnal.gov/redmine/projects/larsoft/issues

Erica Snider LArSoft and event processing frameworks

The philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Use of standardized algorithm / service interfaces
3. Separation of framework and algorithm code
4. Write code that is thread safe
5. Modularity
6. Design / write testable units of code
7. Document code in the source
8. Continuous integration

Start with LArSoft design principles and practices

6

Erica Snider LArSoft and event processing frameworks

The philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Use of standardized algorithm / service interfaces
3. Separation of framework and algorithm code
4. Write code that is thread safe
5. Modularity
6. Design / write testable units of code
7. Document code in the source
8. Continuous integration

Start with LArSoft design principles and practices

7

Most relevant to the
discussion today

Erica Snider LArSoft and event processing frameworks

The philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Use of standardized algorithm / service interfaces
3. Separation of framework and algorithm code
4. Write code that is thread safe
5. Modularity
6. Design / write testable units of code
7. Document code in the source
8. Continuous integration

LArSoft design principles and practices

The foundation of the code sharing paradigm

The nature of LArTPCs allows for the use of many
common algorithms with differences expressed via
configuration or hidden behind common interfaces

Common data products are central element of this

8

Erica Snider LArSoft and event processing frameworks

The philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Use of standardized algorithm / service interfaces
3. Separation of framework and algorithm code
4. Write code that is thread safe
5. Modularity
6. Design / write testable units of code
7. Document code in the source
8. Continuous integration

LArSoft design principles and practices

● Central to the discussion today

● Generally a good practice

● Allows use of LArSoft algorithm code
outside of art, such as:

− Lightweight analysis frameworks

− Specialized development /
debugging environments

● In principle, reduces cost of migration to
new framework, should that be needed

9

Erica Snider LArSoft and event processing frameworks

The philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Use of standardized algorithm / service interfaces
3. Separation of framework and algorithm code
4. Write code that is thread safe
5. Modularity
6. Design / write testable units of code
7. Document code in the source
8. Continuous integration

LArSoft design principles and practices

10

Connects to the framework through coordination
of thread pools and scheduling across
multi-threading units, when that is needed.

Erica Snider LArSoft and event processing frameworks

Conceptual design

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

11

External Utilities and Libraries

Experiment-specific
art-interface code

Experiment-specific algorithm
code (does not depend on art)

“Product
interface
code”

“External
algorithm
libraries”

LArSoft is not stand-alone

Used by experiment code, detector
configurations

Offers integration with other
sim/reco packages under art

Erica Snider LArSoft and event processing frameworks

Conceptual design

Core LArSoft
algorithm code

“LArSoft obj suite”

“Core LArSoft code”

12

Core LArSoft-framework interface
“LArSoft suite”

Explicit dependence on framework

Framework independent

Erica Snider LArSoft and event processing frameworks

Conceptual design

Core LArSoft
algorithm code

“LArSoft obj suite”

Core LArSoft-framework interface
“LArSoft suite”

13

larcore
lardata
larreco

larevt
larsim
larana

lareventdisplay
...

larcorealg
larcoreobj
lardataalg
lardataobj
…

“Core LArSoft code”
Repositories

Erica Snider LArSoft and event processing frameworks

Conceptual design

Core LArSoft
algorithm code

“LArSoft obj suite”

Core LArSoft-art interface
“LArSoft suite”

14

Definition of art modules
● Interactions with art::Event to retrieve and store data products
● Access to module-specific configuration data via fhicl parameter sets
● Event processing art state transitions
● Access to art Service and art Tool plugins

Definition of art Services
● Contains an art-independent “service provider” class
● Aware of art state transitions

Definition of art Tools

art
event

processing
framework

Algorithm code and utilities
● Event data, service “providers”, tool algorithms, fhicl parameter sets

passed into algorithms / utilities
Definition of service providers

● Do all the work required of the service
● Not aware of framework state transitions

Erica Snider LArSoft and event processing frameworks

Conceptual design in practice

Core LArSoft
algorithm code

“LArSoft obj suite”

Core LArSoft-art interface
“LArSoft suite”

15

Definition of art modules
● Interactions with art::Event to retrieve and store data products
● Access to module-specific configuration data via fhicl parameter sets
● Event processing art state transitions
● Access to art Service and art Tool plugins

Definition of art Services
● Contains an art-independent “service provider” class
● Aware of art state transitions

Definition of art Tools
Algorithm code

● Direct use of art::Event to store / retrieve data products
● Direct access to art Services and Tool plugins

art
event

processing
framework

Algorithm code and utilities
● Event data, service “providers”, tool algorithms, fhicl parameter sets

passed into algorithms / utilities
Definition of service providers

● Do all the work required of the service
● Not aware of framework state transitions

Erica Snider LArSoft and event processing frameworks

Conceptual design in practice

Core LArSoft
algorithm code

“LArSoft obj suite”

Core LArSoft-art interface
“LArSoft suite”

16

art
event

processing
framework

Algorithm code and utilities
● Event data, service “providers”, tool algorithms, fhicl parameter sets

passed into algorithms / utilities
Definition of service providers

● Does all the work required of the service
● Not aware of framework state transitions

Have demonstrated that this code runs in Gallery
and LArLite, two light-weight analysis
environments that do not depend on art

Definition of art modules
● Interactions with art::Event to retrieve and store data products
● Access to module-specific configuration data via fhicl parameter sets
● Event processing art state transitions
● Access to art Service and art Tool plugins

Definition of art Services
● Contains an art-independent “service provider” class
● Aware of art state transitions

Definition of art Tools
Algorithm code

● Direct use of art::Event to store / retrieve data products
● Direct access to art Services and Tool plugins

Erica Snider LArSoft and event processing frameworks

• Algorithms / service providers are atomic
– Run on data served to them

• How it is served is a function of framework + framework interface

• Both also thread safe at a minimum (thought not all are in practice, yet)
– Have demonstrated algorithm-level multi-threading in production workflows

• See Giuseppe Cerati’s SciDAC-4 presentation from yesterday
– Multi-threading currently based on TBB, which is owned by framework

• Generally speaking, however, “LArSoft” (and the project team) is not a dominant
driver of framework requirements / features

Conceptually a thin connection of LArSoft to framework

17

https://indico.fnal.gov/event/59872/contributions/267315/attachments/167644/223742/scidac-fwk-wrkshp.pdf

Erica Snider LArSoft and event processing frameworks

• Difficult to manage memory in cases where “event” data is large
– Granularity of memory-resident data is confined to the “event”

• Based on model that assumes “event” = a small number of drift windows (e.g., three)
for a small number of TPCs (e.g., one)

– Very limited ability to manage chunks of data smaller than an “event”
– Algorithms already don’t care how large / small the data is

• No facility to deal with asynchronous data / continuous readout streams
– Demands of continuous data streams are very different than for beam data
– Kyle touched on this during “Future framework development” discussion yesterday

A couple of observations on current framework functionality

18

https://indico.fnal.gov/event/59872/contributions/267312/attachments/167637/223730/frameworks-workshop-2023-06-05.pdf

Erica Snider LArSoft and event processing frameworks

• Support for concurrency and HPC
– Concurrency needed now to solve some grid utilization efficiency problems

• Jobs allocate multiple slots for memory, but run single threaded leaving CPUs idle
• Grid resources are currently important, and will remain important looking ahead
• Current support seems adequate for this

– Expect the use case for “external work” (in CMS language) to grow
• LArSoft already has GPUaaS for ML inferencing
• Many other algorithms well suited to GPUs or other accelerators
• Can we do this efficiently? Do we, e.g., need to recover latency time?
• Will need to understand efficiency issues as this evolution occurs

• Added flexibility in configuration tools can help simplify specification in cases
– Allow for calculable configurations (e.g., loops, conditionals)

• Echoes a Mu2e wish list item discussed by Rob Kutschke yesterday
– Access to the environment, and environment variables in particular

A couple of observations on current framework functionality

19

https://indico.fnal.gov/event/59872/contributions/267314/attachments/167659/223766/Mu2e_FermilabFrameworks_Meeting.pdf

Erica Snider LArSoft and event processing frameworks

The end

20

Erica Snider LArSoft and event processing frameworks

Backup

21

A LArSoft algorithm must be able to perform its task using only:
● LArSoft data products and their associations (input and output data)
● Service providers
● FHiCL parameter sets
● Calls to message_service

Write art modules that:
● Get configuration data from ParameterSet passed to module
● Get data products from, and put them into the event
● Get service instances
● Create algorithm instances (if they are classes)
● Call algorithm methods, passing data products, service providers, ParameterSet(s)

22

Separation of framework and algorithm

Gallery

gallery provides lightweight access to event data in art/ROOT files outside the art event
processing framework.

gallery is not an alternative framework; rather, it provides a library that can be used to write
programs that need to read (but not write) art/ROOT files. You must have access to the
ROOT dictionaries for the classes in a data file to use that data file. The availability of such
dictionaries is provided by the experiments.

gallery is built:

■ without the use of EDProducers, EDAnalyzers, etc., thus
■ without the facilities of the framework (e.g. callbacks from framework transitions, writing

of art/ROOT files).

Algorithm code may be called within code that uses Gallery for event access

23

Separation of framework and algorithm

Canvas
The canvas package is the infrastructure required for providing I/O operations for the full art
framework and the lightweight gallery framework. In particular, the ROOT dictionaries art
provides for experiments to use are located in canvas.

A tutorial is available at: https://github.com/marcpaterno/gallery-demo

Algorithm code may use Canvas internally to support data product associations

24

Separation of framework and algorithm

https://cdcvs.fnal.gov/redmine/projects/art
https://cdcvs.fnal.gov/redmine/projects/gallery
https://github.com/marcpaterno/gallery-demo

Erica Snider LArSoft and event processing frameworks

• Describes the high-level plan of work for the project team.

– Developed through process of one-on-one meetings with experiments followed by
iterations on the draft until presentation to / approval by the Steering Group

– Reflects experiment requirements and requests
– Implements the strategic directions for the shared code of the collaboration

LArSoft / SciSoft play a strong leadership role in defining direction, strategy

• The 2023 LArSoft Work Plan

Project team works to annually revised work plan

25

https://indico.fnal.gov/event/56868/attachments/162185/214861/2023%20LArSoft%20Work%20Plan.pdf

Erica Snider LArSoft and event processing frameworks

Strategic directions of the 2023 work plan

1. Support multi-threading to optimize running on grid resources

2. Enable / facilitate optimized running on GPU and HPC resources

3. Facilitate / simplify integration of machine learning workflows

4. Support heterogeneous detector readouts in simulation and reconstruction

5. Provide a multi-experiment capable event display framework

6. Expand adoption of community / industry supported tools

2023 LArSoft Work Plan

26

Erica Snider LArSoft and event processing frameworks

Strategic directions of the 2023 work plan

1. Support multi-threading to optimize running on grid resources

2. Enable / facilitate optimized running on GPU and HPC resources

3. Facilitate / simplify integration of machine learning paradigms

4. Support heterogeneous detector readouts in simulation and reconstruction

5. Provide a multi-experiment capable event display framework

6. Expand adoption of community / industry supported tools

2023 LArSoft Work Plan

27

LArSoft held “LArTPC Multi-threading and Acceleration Workshop” Mar 2–3
(will come back to this at end…)

Erica Snider LArSoft and event processing frameworks

• All experiments report using multiple grid slots to accommodate memory of jobs

– Running single-threaded programs leads to significant underutilization of CPU
– Memory use driven by event-level data
– Need sub-event level multi-threading or more granular data management strategies

• Project work
– Working with experiments to ensure thread-safety in common and

experiment-specific code
– Implementing multi-threading in common services
– Past integration of contributions from SciDAC4 efforts

1. Support multi-threading

28

Erica Snider LArSoft and event processing frameworks

• Many LArTPC computing problems highly parallelizable that can benefit from
hardware acceleration

– Low-level data and signal processing
– Simulation
– Machine learning

• Multi-threading, GPU acceleration create paths to optimized running on HPC
– Several experiments / projects have experience with LArSoft code on HPC
– Demonstrated in SciDAC4 work by Giuseppe Cerati, Sophie Berkman, et al.

• Project work
– Focus on making low-level data structures suited to GPU processing,
– Work with experiments on specific algorithms (to be identified)
– Current Spack migration well suited to needs of HPC-enabled builds

2. Enable / facilitate optimized running on GPU and HPC

29

Erica Snider LArSoft and event processing frameworks

• Most ML efforts within experiments are completely external to LArSoft
– MicroBooNE experience:

• ML-based analysis branch all but isolated to small group of analyzers.
• Separate data production workflows required, which slowed data availability

– Integration into LArSoft would alleviate all these issues

• Some ML algorithms benefit from GPU acceleration at inference stage
– Highly dependent on the problem and solution
– Some overlap with acceleration work previously noted

• Experiment groups in ICARUS and ND-LAr working on fully ML workflows

• Project work
– Ensure configurations, inputs and outputs are available to ML interfaces
– Assist experiment groups with interfacing to LArSoft
– Past integration of Sonic-derived GPUaaS into LArSoft targeted ML inferencing

3. Facilitate / simplify integration of machine learning workflows

30

Erica Snider LArSoft and event processing frameworks

• Primarily aimed at accommodating pixelated readouts (ND-LAr)
– Also intended to allow future detectors to have completely different readout schemes

• Project work

– Adapt geometry and simulation systems
• Portions of reconstruction code must differ

– Will be provided by experiments

– Geometry: requires re-factoring readout from volume geometry
• Several wire-plane readout configurations already supported
• Readout geometry currently tightly intertwined with more generic volume geometry

– Past work adapted simulation via similar abstraction of anode simulation
• The “artg4tk / LArG4” re-factoring completed several years ago

4. Support heterogeneous detector readouts in sim and reco

31

Erica Snider LArSoft and event processing frameworks

• A persistent and vocal ask from many experiments

• Would add value in exactly the same way that common sim/reco do.

• Project work

– Design, develop event display framework, or adapt an existing ED to requirements

– Experiments provide customizing code

Requires local ED / visualization expertise, which is currently lacking
– Can view this as a request to build this expertise

5. Provide a multi-experiment capable event display framework

32

Erica Snider LArSoft and event processing frameworks

• A good strategy wherever possible and cost effective

• Recent major examples
– Migration to GitHub (last year)
– Migration to Spack (continuing)

• Project work

– Nothing beyond existing work currently in plan, but always seeking opportunities

6. Expand adoption of community / industry supported tools

33

Erica Snider LArSoft and event processing frameworks

• Vito di Benedetto
• Patrick Gartung
• Chris Green
• Robert Hatcher
• Kyle Knoepfel (co-lead)
• Lynn Garren (ret.)
• Marc Paterno
• Saba Sehrish
• Erica Snider (co-lead)
• Mike Wang
• Hans Wenzel

SciSoft team

34

