Counter Monte Carlo George Iskander, Ralf Ehrlich

Why MC?

- For best reconstruction, must maximize photon yield in counters
- Highly susceptible to counter geometry, choice of materials, material properties, etc.
- Creating all possible counter designs? Difficult
- Simulating? Easier

Status of MC

- Iterating including more and more quantities relevant to simulation
- E.g. Mu2e polymer absorption length, TiO₂ reflectivity, POPOP emission spectrum

MC Sims

- 48 physical configurations (not including beam distance)
- Using 120 GeV protons 1 m away from read out, shot from bottom to top, fiber radius of 0.7 mm
- Counter is 3 m long
- For this short talk, will focus mainly on Mu2e geometry

Left: One cunter used in Mu2e showing fibers Right: Full Mu2e counter assembly

Image: Plot from
Alan showing
reflectivity values
of different
materials as well
as POPOP emission
spectrum

Mu2e Polymer, New TiO_2 Coating

PEs histogram for Mu2e geometry with TiO₂ coating with measured reflectivities

PEs = 43

PEs histogram for Mu2e geometry with coating of 98% reflectivity

PEs = 60

300

PEx

Mu2e Polymer, Solaris

Solaris?

- Fiber holes can be larger than fibers
- If fiber hole > fiber size then a choice
- Can fill hole with Solaris
 Solaris = pure, silicone rubber compound
- Can leave empty with vacuum

PEs histogram for Mu2e geometry with TiO₂ coating with measured reflectivities

Fiber hole rad. = 0.9 mm, hole filled with air

PEs = 43

Position 1000mm (z), 0mm (y)

PEs histogram for Mu2e geometry with with measured reflectivities

Fiber hole rad. = 0.7 mm, no hole

PEs = 79

Now, with Solaris

PEs histogram for Mu2e geometry with TiO_2 coating with measured reflectivities

Fiber hole rad. = 0.9 mm, hole filled with air

 $\mathsf{PEs} = 43$

PEs histogram for Mu2e geometry with TiO₂ coating with measured reflectivities

Fiber hole rad. = 0.9 mm, hole filled with Solaris

PEs = 80

Brief Overview of Other Configurations

Rectangle bar 5cm x 2cm, 2 fibers (1.3mm off-center) Current TiO2 reflectivity no filling in fiber channel(s) Counter length 3000mm Fiber radius 0.7mm, Fiber hole radius 0.9mm (x) 0.9mm (y)

Image: Histograms generated for one configuration of the mu2e geometry, including variations in beam location

Note: We read out fiber on left side (-13 mm), so PE drops the further from this location

Different configurations

Results are consistent across geometries and beam location

Rectangle bar 5cm x 2cm, 1 fibers (at center) Current TiO2 reflectivity no filling in fiber channel(s) Counter length 3000mm Fiber radius 0.7mm, Fiber hole radius 0.9mm (x) 0.9mm (y)

Position 1000mm (z), 0mm (y) PEs (mpv): 49 Reflections at coating (avg): 6.8

Track length in scintillator (avg): 218mm

Position 1000mm (z), 3mm (y) PEs (mpv): 50

Reflections at coating (avg): 7.3

Track length in scintillator (avg): 237mm

Position 1000mm (z), 6mm (y)

PEs (mpv): 47 Reflections at coating (avg): 7.9 Track length in scintillator (avg): 254mm

Image: Histograms generated for one configuration of 1 fiber rectangle bar geometry with 0.9 mm fiber hole: no Solaris, measured TiO2 reflectivities

Note: For this geometry, fiber is at 0 mm. Square bar 1cm x 1cm, 1 fibers (at center) Current TiO2 reflectivity no filling in fiber channel(s) Counter length 3000mm Fiber radius 0.7mm, Fiber hole radius 0.9mm (x) 0.9mm (y)

Position 1000mm (z), 0mm (y) PEs (mpv): 70

Reflections at coating (avg): 9.7 Track length in scintillator (avg): 99mm

Position 1000mm (z), 3mm (y) PEs (mpv): 83 Reflections at coating (avg): 10.2

Track length in scintillator (avg): 104mm

Position 1000mm (z), 6mm (y)

PEs (mpv): 0 Reflections at coating (avg): 0.1 Track length in scintillator (avg): 1mm Position 1000mm (z), 10mm (y) PEs (mpv): 0 Reflections at coating (avg): 0.0 Track length in scintillator (avg): 0mm

Image: Histograms generated for one configuration of 1 cm x 1 cm geometry with 0.9 mm fiber hole, no Solaris, measured TiO2 reflectivities Triangle bar 4cm (base) x 2cm (height), 1 fibers (at center) Current TiO2 reflectivity no filling in fiber channel(s) Counter length 3000mm Fiber radius 0.7mm, Fiber hole radius 0.9mm (x) 0.9mm (y)

Position 1000mm (z), 0mm (y) PEs (mpv): 74 Reflections at coating (avg): 8.7

Track length in scintillator (avg): 172mm

Position 1000mm (z), 3mm (y) PEs (mpv): 67 Reflections at coating (avg): 9.1

Track length in scintillator (avg): 180mm

Position 1000mm (z), 6mm (y)

PEs (mpv): 53 Reflections at coating (avg): 9.6 Track length in scintillator (avg): 190mm

Image: Histograms generated for one configuration of triangle geometry with 0.9 mm fiber hole, no Solaris, measured TiO2 reflectivities

Note: For this geometry, PEs drop b/c of triangle shape

Next steps

- Changing beam location
- Testing different polymers (not just Mu2e)
- Testing with infinite absorption length to isolate impact of coating
- Testing bismuth-207 source: produces 1 MeV electrons