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High Brightness Muon Beams

 Production of high brightness muon beams requires
 Powerful proton source
 Pion production and capture
 Beam handling and cooling

 Review activities in context of:
 Plans for ISIS upgrades
 Plans for Muon Collider

 Focus on technology R&D aspects
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 ISIS
 Most powerful pulsed 

spallation source in Europe
 Neutrons for neutron 

scattering
 Short pulse muon beams 

(mainly) for muSR
 Growing interest in upgrade

 European neutron drought, 
even with ESS

 MuSR lines oversubscribed

ISIS



  

 Three possible upgrade paths under investigation
 Rapid Cycling Synchrotron (RCS, e.g. JPARC, Fermilab)
 Linac + accumulator ring (AR, e.g. SNS)
 Fixed field alternating gradient accelerator

 Aim for O(MW) pulsed beams

ISIS Upgrades
FFA optionRCS option

D Adams et al

S Machida et al



  

ISIS Upgrade Options

(RCS)
 RCS and AR attractive
 Can meet requirements

 Foil heating
 Management of space charge

 Significant wall plug power
 Two stacked rings required

 But well-known solutions
 FFA is promising alternative

 Likely lower power requirements
 More versatile
 But less well-established



  

ISIS Upgrades – FFA Test Ring

 Design effort focused on test ring
 Demonstrate high intensity operation
 Control of tune
 Charge exchange injection & phase space painting
 Longitudinal dynamics

 Key FFA technology
 Wide aperture dipoles with enhanced field in high radius region

S Machida et al
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 Few fundamental limits to proton current e.g.
 Foil heating
 Target heating
 Space charge at injection

 Inject at low energy, stack at high energy
 → reduce drastically space charge at injection

Stacking

Inject Inject Inject Inject
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D Kelliher
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 3D magnet model developed
 Trims enable choice of field profile across the magnet
 Ensure correct focusing ‘k-value’ for the entire magnet
 Plan to build prototype (2025)

FFA Magnet modelling

Comsol Model Opera Model

protons

protons

TJ Kuo, JB Lagrange, I. Rodriguez



  9

Low frequency RF

MA core

Ferrite frame

 Development of suitable low frequency RF cavities
 Ferrite or MA loaded to reduce wavelengths
 Generate frequency 2 – 4 MHz (h=2)

 Ferrite
 8 4M2 blocks arrived December 2022.
 Initial tests confirm Q~100.
 Bias winding requires 2800 Amp turns to achieve 

frequency sweep.
 MA core

 Initial impedance measurements of Magdev 
1K107 and Hitachi FT3L cores have been made.

 High voltage tests of both Ferrite and MA underway

R Mathieson, I Gardner
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FFA technology - Applications

PRISM  FFA technology has many applications
 Development of FFA magnets → general tech

 Tunability of field profile advantageous
 Also applicable to

 Muon storage rings for neutrino production
 Rapid acceleration of muons e.g. for collider
 Rapid acceleration for FLASH radiotherapy
 High intensity protons for ADSR and neutrons
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Muon Collider

 Muon collider → potential short cut to 
the energy frontier
 Multi-TeV collisions in next 

generation facility
 Combine precision potential of 

e+e- with discovery potential of pp
 High-flux, TeV-scale neutrino 

beams for nuclear & BSM physics
 High-flux, precision muon beams 

at low energy
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MuC Target

 Protons on target → pions → muons
 Graphite target takes proton beam to produce pions

 Back up options under investigation
 Heavily shielded, very high field solenoid captures π+ and π -

 Challenge: Solid target and windows lifetime
 Challenge: Energy deposition and shielding of solenoid

R. Franqueira-Xemines et al, CERN



  

Magnet options

 Investigating force-flow cooled HTS cable
 Operation at 20 K → more efficient cryo plant
 Smaller footprint and stored energy than LTS

 Also strong synergy with
 Fusion
 UHF Magnets for science

 Radiation hardness under study

Water moderatorStainless steel

H
e 

co
ol

in
g

Tungsten Shield



  14

Fluidised Tungsten Target

 Looking at fluidised Tungsten bed as possible target material
 Alleviates many of the challenges surrounding fixed targets
 Promising also as a neutron spallation target

C. Densham, STFC
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 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more parallel

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing → low β
 Mitigate with low-Z materials
 Equilibrium emittance where MCS cancels the cooling

 Verified by the Muon Ionisation Cooling Experiment (MICE)

Ionisation Cooling

Absorber MUONSRF
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Muon Cooling

4D Final 
cooling Rectilinear

cooling

Stratakis et al

Fol et al 
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Cooling Demonstrator



  18

Comparison with Existing Data

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single particle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Preliminary Cooling Cell Concept
2 m

Solenoid + 
dipole RF cavity Absorber

β = parameterised beam width
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Optics vs momentum

 Acceptance driven by tune consideration
 Tune = number of focusing oscillations per magnetic cell
 Acceptance for tune near to resonances 

Survival probability
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Integration issue: RF
 B-fields reduce RF Safe 

Operating Gradient (SOG)
 e- emitted from copper
 B-field focuses on far wall
 Induces sparks

 Muon cooling needs high RF 
gradient + B-field

 Two routes demonstrated
 Either: Beryllium window 

resistant to damage
 Or: High-pressure gas absorbs 

spark
 Other ideas

 Operate at lN2 temperature
 Short RF pulse to limit heating

High pressure gas

Window  
material

Bowring et al

Yonehara et al
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Be RF & LiH Performance

 Use Beryllium for RF cavity 
walls

 Use LiH in absorber
 Good cooling performance

 Transverse and longitudinal 
emittance reduced by ~ 20 %

 Approx factor two reduction in 
6D emittance

 Optimisation ongoing
 Assumes perfect matching for 

now
 Assume LiH for now

 Liquid Hydrogen performance 
likely better

Transmission losses 2.00%
Decay losses 4.00%

1.95 mm
1.57 mm
3.61 mm
2.99 mm

Trans ε in
Trans ε out
Long ε in
Long ε out
6D ε in 12.7 mm3

6D ε out 6.3 mm3



  23

Timeline

 Assumes full effort of major lab e.g. CERN, Fermilab
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Outlook

 Very exciting time for high brightness muon beam R&D
 Too much material to cover!

 High power protons, including FFA R&D
 Pion and muon production targets
 Muon cooling studies

 Look forwards to further collaborations with US
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