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High Brightness Muon Beams @
SRS

= Production of high brightness muon beams requires
= Powerful proton source
= Pion production and capture
= Beam handling and cooling
= Review activities in context of:
= Plans for ISIS upgrades
= Plans for Muon Collider

= Focus on technology R&D aspects
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= JSIS
|
Most p_owerful pul_sed Neutrorssl
spallation source in Europe Muon source
= Neutrons for neutron
scattering

= Short pulse muon beams
(mainly) for muSR

= Growing interest in upgrade

= European neutron drought,
even with ESS

= MuSR lines oversubscribed %@ Science &Technology
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ISIS Upgrades
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FFA option
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Three possible upgrade paths under investigation
= Rapid Cycling Synchrotron (RCS, e.g. JPARC, Fermilab)

= Linac + accumulator ring (AR, e.g. SNS)

= Fixed field alternating gradient accelerator
Aim for O(MW) pulsed beams



ISIS Upgrade Options %;

Single Particle Tunes (RCS)

= RCS and AR attractive
= Can meet requirements
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ISIS Upgrades — FFA Test Ring @

-

-4 -2 0 2 4
= Design effort focused on test ring x [m]

= Demonstrate high intensity operation

= Control of tune

= Charge exchange injection & phase space painting

= Longitudinal dynamics
= Key FFA technology

= Wide aperture dipoles with enhanced field in high radius region



Stacking @
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= Few fundamental limits to proton current e.g.
= Foil heating
= Target heating
= Space charge at injection
= Inject at low energy, stack at high energy
"= — reduce drastically space charge at injection
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FFA Magnhet modelling %;

{ TJ Kuo, JB Lagrange, I. Rodriguez : f;
; | i
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= 3D magnet model developed

= Trims enable choice of field profile across the magnet
= Ensure correct focusing ‘k-value’ for the entire magnet
= Plan to build prototype (2025)
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Low frequency RF % ;

R Mathieson, I Gardner

s Development of suitable low frequency RF cavities
= Ferrite or MA loaded to reduce wavelengths
= Generate frequency 2 — 4 MHz (h=2)

= Ferrite

m 8 4M2 blocks arrived December 2022.
= |nitial tests confirm Q~100.

= Bias winding requires 2800 Amp turns to achieve
frequency sweep.
= MA core

= |nitial impedance measurements of Magdev
1K107 and Hitachi FT3L cores have been made.
= High voltage tests of both Ferrite and MA underway

MagDev 1K107 Core Measurements Hitachi FT3L Core Measurements
Cavity Impedance (2 MagDev Cores) Cavity Impedance (2 Hitachi cores 200V)
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FFA technology - Applications

PRISM = FFA technology has many applications
Bvua Sl s Development of FFA magnets - general tech

= Tunability of field profile advantageous

= Also applicable to

= Muon storage rings for neutrino production
nper S = Rapid acceleration of muons e.g. for collider
= Rapid acceleration for FLASH radiotherapy

= High intensity protons for ADSR and neutrons

Detector Solenoid

Muon Storage Ring
(Phase Rotator)

nnnnnnnnnnn

Pion Capture Solenoid
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Muon Collider
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Muon collider - potential short cut to

the energy frontier

Multi-TeV collisions in next
generation facility

Combine precision potential of
e*e” with discovery potential of pp

High-flux, TeV-scale neutrino .
beams for nuclear & BSM phySiCS . ..............................

vvvvvvvvvvvvv

Muon Collider Accelerator
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~10km circumference
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. - 4 GeV Target, & Deca Coolin,
High-flux, precision muon beams i fuon & g Chamel

p Acceleration i ¢0’
1 ===
at low energy R s 3
Muons/bunch N 1012 2.2
Repetition rate 1 Hz 5
Beam power Pe.on MW 5.3
RMS longitudinal emittance €l eVs 0.025
Norm. RMS transverse emittance £l um 25
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= Protons on target — pions — muons
= Graphite target takes proton beam to produce pions
= Back up options under investigation
= Heavily shielded, very high field solenoid captures t* and 1t-

= Challenge: Solid target and windows lifetime
= Challenge: Energy deposition and shielding of solenoid
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Magnet options %;

= Investigating force-flow cooled HTS cable
= QOperation at 20 K — more efficient cryo plant
= Smaller footprint and stored energy than LTS
= Also strong synergy with
= Fusion
= UHF Magnets for science

= Radiation hardness under study

[K]




l Fluidised Tungsten Target @
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C. Densham, STFC
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= Looking at fluidised Tungsten bed as possible target material
= Alleviates many of the challenges surrounding fixed targets
= Promising also as a neutron spallation target
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Ionisation Cooling
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_—r

/

= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction

= End up with beam that is more parallel
= Multiple Coulomb scattering from nucleus ruins the effect
= Mitigate with tight focussing — low [3

= Mitigate with low-Z materials
= Equilibrium emittance where MCS cancels the cooling

= Verified by the Muon Ionisation Cooling Experiment (MICE)
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Muon Cooling
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Cooling Demonstrator

ollaboration

RF Sglenoid Absorber

* Upstream Instrumentation 5
and Matching ownstream
Instrumentation

== High-intensity high-energy pion source

Target Collimation and
phase rotation
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Comparison with Existing Data %D

Upstream Spectrometer Solenoid r Solenoid
TOFO TOF1 TOF2
‘1 = D E—— o #
Ckov Ckov \5 = = = = = {
A B

RF S/olenoid Abs/orber

= = = = = = = = == = = =l
o T I ATy A T

g R SR D
Upstream Instrumentation
and Matching

-ﬂ.\:_ == High-intensity high-energy pion source

Target Collimation and
phase rotation

Downstream
Instrumentation

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single patrticle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Preliminary Cooling Cell Concept
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RF real estate gradient 22MV/m

RF nominal phase 2°
I‘ RF frequency 704 MHz
l Wedge thickness on-axis 0.0342 m
dipole RF cavity Absorber

Wedge apex angle )
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! Optics vs momentum @
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= Acceptance driven by tune consideration
= Tune = number of focusing oscillations per magnetic cell
= Acceptance for tune near to resonances
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Integration issue: RF % >/

= B-fields reduce RF Safe Window Breld (1) 50G (MV/m)
. . terial -11e m
Operating Gradient (SOG) e
) Cu 0 24.4 +0.7
= ¢ emitted from copper Cu 3 2.9+ 04
= B-field focuses on far wall Be 0 41.1 £2.1
Be 3 >498+25
= Induces sparks Be/Cu 0 43.940.5
= Muon cooling needs high RF Be/Cu 3 10.1+0.1
gradient + B-field Bowring ctal
Pressure (psia) at T=293K
= Two routes demonstrated PRI, TS SO e N NG BV
= Either: Beryllium window ™ Mo Date: mus radients38 MVIm Highrpressurg gas
resistant to damage Pl g i s v e
= Or: High-pressure gas absorbs ?-'w et
spa rk E i Ll Electrode breakdown region
= Qther ideas L S P
m Operate at INZ temperature 00‘ 0.001 :)j:c:]zreakdoaga oiu)u:m,_or;?‘;/c:ﬁ;ﬁ 0.007 0.008 0.009 U.i‘)l
= Short RF pulse to limit heating Yonehara et al
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Be RF & LiH Performance
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= Use Beryllium for RF cavity
walls 35 ]

= Use LiH in absorber

= Good cooling performance

E
= Transverse and longitudinal 5
emittance reduced by ~ 20 % ¢

= Approx factor two reduction in

2.0+

6D emittance -
=  QOptimisation ongoing 15 )
. tl) 10 20 3ID 40 5|D
= Assumes perfect matching for 2 [m]
now Transmission losses 2.00%
= Assume LiH for now Decay losses 4.00%
= Liquid Hydrogen performance Irans & . 12‘;’ mm
likely better rans & ou > mm
Long € In 3.61 mm
Long € out 2.99 mm
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Timeline

& 2 & & % S
3 B H B H E

collider complex

Source and

Coaoling
Demonstrator

Hardware

Technically limited timeline
Initial design
Facility Conceptual
I]es‘g Fi
Technical
Design

E E Facility Construction
Dermonstrator E. E
design = 2
= =
Preparatory | o =
work § §
Prototypes | — | Demenstrator e
E Construch on =

& & |Demonstrator exploitation and upgrades
0 ef
Design and
modelling
rofo g
Pre-series
Production
Cost and Performance Ready fo Ready to Ready to
Estimation Commit Construct Operate

= Assumes full effort of major lab e.g. CERN, Fermilab
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Outlook @
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= Very exciting time for high brightness muon beam R&D

= Too much material to cover!
= High power protons, including FFA R&D
= Pion and muon production targets
= Muon cooling studies
= Look forwards to further collaborations with US
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