Muon Spin Force

Ting Gao University of Minnesota

Based on 2308 01356 with Y Ema and M Pospelov

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Muon spin dynamics

- Why do we care about a force acting on the muon spin
- Where could this force come from

Indirect constraints on muon spin force

- Experiments on nuclear spin force
- Nuclear spin force as indirect constraints on muon spin force
- A suggestion for direct detection
- Indirect constraints on muon EDM
- Summary

B> B

Spin precession in storage ring experiments

In the muon's rest frame

$$rac{\mathrm{d} oldsymbol{s}}{\mathrm{d} t} = oldsymbol{s} imes (\mu_{\mu} oldsymbol{B})$$

In storage rings, the observable is the muon's precession frequency relative to its direction of motion

$$\boldsymbol{\Omega}_{s} - \boldsymbol{\Omega}_{\beta} = \frac{e}{m_{\mu}} \left[a_{\mu} \boldsymbol{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\boldsymbol{\beta} \cdot \boldsymbol{B} \right) \boldsymbol{\beta} + \boldsymbol{\beta} \times \left(\frac{1}{\gamma^{2} - 1} - a_{\mu} \right) \boldsymbol{E} \right]$$

- a_μ can be easily observed if $rac{e}{m_\mu}a_\mu oldsymbol{B}$ is the only contributing term
- $\boldsymbol{\beta} \cdot \boldsymbol{B} \approx 0$ in storage ring setup
- $\bullet~{\rm BNL}$ and FNAL choose $\gamma\approx29.3$ to cancel the last term
- A new force acting on the muon spin would mess things up

э

Contribution to precession frequency from a muon spin force

A muon spin force $H = \Delta E_{(\mu)} \mathbf{n} \cdot \boldsymbol{s}$ would modify the spin dynamics

$$\left(rac{\mathrm{d}m{s}}{\mathrm{d}t}
ight)_{\mathsf{rest frame}} = m{s} imes (\mu m{B} - \Delta E_{(\mu)} m{n})$$

$$\mathbf{\Omega}_{s} - \mathbf{\Omega}_{\beta} = \frac{e}{m_{\mu}} \left[a_{\mu} \mathbf{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\mathbf{\beta} \cdot \mathbf{B} \right) \mathbf{\beta} + \mathbf{\beta} \times \left(\frac{1}{\gamma^{2} - 1} - a_{\mu} \right) \mathbf{E} - \frac{m_{\mu}}{\gamma e} \Delta E_{(\mu)} \mathbf{n} \right]$$

The observed a_μ would be shifted by $|\Delta a_\mu|=m_\mu\Delta E_{(\mu)}/(\gamma eB)$ if ${f n}$ is parallel to ${f B}$

In the FNAL magnetic field B = 1.45T,

$$\Delta a_{\mu}\simeq 2.5\times 10^{-9}\quad\Longleftrightarrow\quad |\Delta E_{(\mu)}|=6\times 10^{-14} {\rm eV}$$

3

Monopole-dipole interaction as origin of the muon spin force

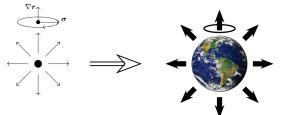
A muon spin force can be generated by a light scalar field which has scalar coupling with nucleons and axial vector/pesudoscalar coupling with the muon

$$\mathcal{L}_{\text{eff}} = \dots + \frac{1}{2} (\partial_{\nu} \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - g_S \phi(\bar{n}n + \bar{p}p) + \frac{g_A^{(\mu)}}{2m_{\mu}} \partial^{\alpha} \phi \bar{\mu} \gamma_{\alpha} \gamma_5 \mu - g_P^{(\mu)} \phi \bar{\mu} i \gamma_5 \mu.$$

In the non-relativistic limit, this turns out to be a force acting on the muon spin $(g_A^{(\mu)})$ and $g_P^{(\mu)}$ have the same effect at tree level)

$$H^{(\mu)} = \frac{g_S(g_A^{(\mu)} + g_P^{(\mu)})}{4\pi \times 2m_{\mu}} (\boldsymbol{\sigma}^{(\mu)} \cdot \boldsymbol{\nabla}) \frac{\exp(-m_{\phi}r)}{r} \Longrightarrow \Delta E_{(\mu)}(\mathbf{s} \cdot \mathbf{n})$$

Small for individual nucleon-muon pair, but can be enhanced by the large number of nucleons in the Earth to produce an observable effect.

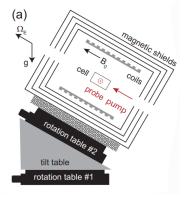


(Ryan Janish & Harikrishnan Ramani 2006.10069, Prateek Agrawal et al 2210.17547, Hooman Davoudiasl & Robert Szafron 2210.14959)

Indirect constraints from nuclear spin force experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

lsotope experiments: the design



(S.-B. Zhang et al 2303.10352)

- The comagnetometer cell is filled with ¹²⁹Xe and ¹³¹Xe
- A magnetic field $B_0\sim 3.5\mu{\rm T}$ is generated along the Earth's rotation direction
- The ratio of the precession frequency $R_+=\omega_{129}/\omega_{131}$ is measured
- Reversing the direction of the magnetic field gives a new ratio R_{-}
- The size of the spin force can be obtained from the difference $R_+ R_-$

Image: 0

-∢ ≣ →

-

- ∢ ⊒ →

Isotope experiments: the observable

The interaction is given by

$$H_i = -\mu_N g_i (\mathbf{I} \cdot \mathbf{B}) + \Delta E_i (\mathbf{I} \cdot \mathbf{n})$$

For Xe isotope,

$$R_{+} - R_{-} = \frac{2}{\omega_{131}} \left(\Delta E_{129} - \Delta E_{131} \frac{g_{129}}{g_{131}} \right) \cos \phi \quad (+ \Omega_E \text{ terms})$$

If ΔE_i and g_i are exactly proportional among isotopes, there is no sensitivity.

The observable is the difference in $\Delta E_i/g_i$ between isotopes, current best limits are

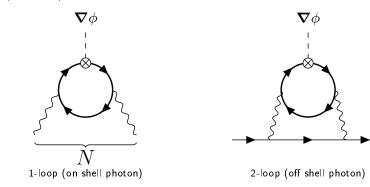
$$\begin{split} |\Delta E_{\rm Hg}| &= \left| \Delta E_{201} - \Delta E_{199} \frac{g_{201}}{g_{199}} \right| < 3.0 \times 10^{-21} \, {\rm eV} \quad ({\sf UW \ experiment}) \\ |\Delta E_{\rm Xe}| &= \left| \Delta E_{129} - \Delta E_{131} \frac{g_{129}}{g_{131}} \right| < 1.7 \times 10^{-22} \, {\rm eV} \quad ({\sf USTC \ experiment}) \end{split}$$

Many orders of magnitude better compared to $|\Delta E_{(\mu)}| = 6 \times 10^{-14}$ eV, could possibly afford a loop penalty to consider the spin force transfer.

3

ヘロト 人間ト ヘヨト ヘヨト

At the lowest order the muon spin force can be transferred to the nucleus with a muon loop and two photons

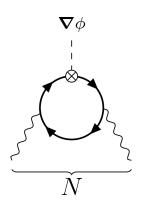


 $g_A^{(\mu)}$ and $g_P^{(\mu)}$ have different consequences in loops

3

イロン イ団 とくほと くほとう

Consequences at 1-loop, constraints on pseudoscalar coupling



$$\mathcal{L}_{eff} = \frac{e^2 \nabla \phi}{4\pi^2 m_{\mu}} \cdot \left(g_P^{(\mu)} \mathbf{B} A_0 + \frac{g_A^{(\mu)}}{12m_{\mu}^2} \mathbf{B} \nabla^2 A_0 \right).$$

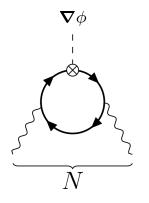
- Axial vector contribution suppressed by $1/(R_N m_\mu)^2 \sim 0.1$
- Nuclear charge well approximated by a uniform distribution.
- Magnetic field distribution is uncertain because no nuclear model reliably explains where the nuclear magnetic dipole moment comes from.
- We model the magnetic field to be coming from valance neutron + core polarization

$$m{B}=m{B}_n+m{B}_{\mathsf{core}}$$

- $\bullet~ {\pmb B}_n$ obtained by numerically solving Schrödinger equation in Woods-Saxon potential
- **B**_{core} modeled by uniform polarization to reproduce the correct magnetic moment

10/21

Consequences at 1-loop, constraints on pseudoscalar coupling



Loop transfer:

$$\begin{vmatrix} \frac{\Delta E_{\mathrm{Hg}}}{\Delta E_{(\mu)}} \end{vmatrix} = 1 \times 10^{-6}; \quad \begin{vmatrix} \frac{\Delta E_{\mathrm{Xe}}}{\Delta E_{(\mu)}} \end{vmatrix} = 3 \times 10^{-6} \text{ for } g_P^{(\mu)},$$
$$\begin{vmatrix} \frac{\Delta E_{\mathrm{Hg}}}{\Delta E_{(\mu)}} \end{vmatrix} = 2 \times 10^{-8}; \quad \begin{vmatrix} \frac{\Delta E_{\mathrm{Xe}}}{\Delta E_{(\mu)}} \end{vmatrix} = 4 \times 10^{-9} \text{ for } g_A^{(\mu)}.$$

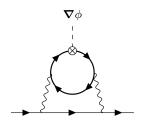
Combined with the constraint from nuclear experiments:

$$\begin{split} |\Delta E_P^{(\mu)}(\mathrm{Hg})| &< 3 \times 10^{-15} \,\mathrm{eV}, \quad |\Delta E_P^{(\mu)}(\mathrm{Xe})| < 6 \times 10^{-17} \,\mathrm{eV} \\ |\Delta E_A^{(\mu)}(\mathrm{Hg})| &< 2 \times 10^{-13} \,\mathrm{eV}, \quad |\Delta E_A^{(\mu)}(\mathrm{Xe})| < 4 \times 10^{-14} \,\mathrm{eV} \\ \end{split}$$
To explain g-2:

$$|\Delta E_{(\mu)}| = 6 \times 10^{-14} \text{eV}$$

Pseudoscalar coupling is ruled out by a few orders of magnitude, constraint on axial coupling is uncertain due to nuclear uncertainty (Loop transfer to Xe comes from numerical cancellation at 1% level for $g_A^{(\mu)}$).

Consequences at 2-loop, constraints on axial vector coupling



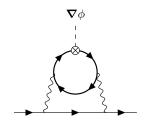
- Pseudoscalar coupling contribution is suppressed at 2-loops
 - Induced electron coupling is small
 - UV finite, cannot see free quarks
 - Neutron contribution suppressed by magnetic form factors
- Axial vector coupling can be important
 - UV scale compensates loop smallness
 - Not suppressed by $1/(R_N^3 m_\mu^2 m_p) \sim 5 \times 10^{-3}$ compared to 1-loop

A 3 - 5

э

- ∢ ⊒ →

Consequences at 2-loop, constraints on axial vector coupling



$$\begin{split} \mathcal{L}_{\text{eff}} &= \sum_{i=u,d,s,e} \frac{g_A^{(i)}}{2m_{\mu}} \partial_{\alpha} \phi \times \bar{\psi}_i \gamma^{\alpha} \gamma_5 \psi, \\ g_A^{(i)} &= -g_A^{(\mu)} \times \frac{3}{4} \left(\frac{\alpha}{\pi}\right)^2 Q_i^2 \log(\Lambda_{\text{UV}}^2 / \Lambda_{\text{IR}}^2) \end{split}$$

• Induced axial coupling with quarks can be transferred to the nucleus

• Result relatively consistent among various models

$$\Delta E_{\rm Xe} = (3-7) \times 10^{-8} \times \Delta E_{(\mu)} \times \frac{\log(\Lambda_{\rm UV}^2/\Lambda_{\rm IR}^2)}{\log(m_\tau^2/m_p^2)} \quad \rightarrow \quad \left|\Delta E_{(\mu)}\right| < 6 \times 10^{-15} \text{eV}$$

- Kind of stronger than the muon g-2 requirement, but this result could be undermined by nuclear uncertainty at 1-loop.
- Constraint from Hg isotopes has better 1-loop behavior, but their spin content are poorly known.

13/21

ヘロト 人間ト ヘヨト ヘヨト

Direct detection using stopped muons

◆□> ◆□> ◆三> ◆三> 三三 のへで

General idea for direct detection

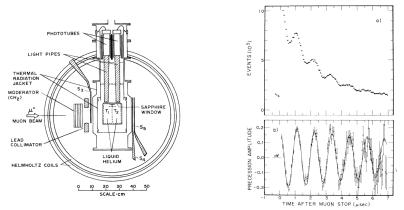
$$\mathbf{\Omega}_s = rac{e}{m_\mu} \left(a_\mu + rac{1}{\gamma}
ight) \mathbf{B} - rac{1}{\gamma} \Delta E_{(\mu)} \mathbf{n} + \cdots$$

- Need a way to distinguish the two effects → the ability to change the size of magnetic field, preferably with a possibility of reversing direction
- Effect is larger for small $\gamma \longrightarrow$ easier to detect with stopped muons
- $|\Delta E_{(\mu)}| = 6 \times 10^{-14} \text{eV}$ is equivalent to $B^{eq} = \Delta E_{(\mu)}/\mu_{\mu} \simeq 1.1 \text{mGs} \longrightarrow \text{might}$ be easier to detect at low/medium values of magnetic field

э.

Existing experiments in similar conditions

An experiment using stopped muons was done half century ago using magnetic field ${\sim}66\rm Gs$ to measure the magnetic moment of μ^+ . (V. Hughes et al PhysRevLett.33.572)



Their result is $\Omega=2\pi\times(13.58\pm0.02\rm{kHz/G})\times B$, about two orders of magnitude weaker in accuracy than our requirement.

A possible setup

۲

Muon spin resonance in weak magnetic field using stopped μ^+

$$\Delta\psi=\frac{\Delta E_{(\mu)}t}{\hbar}\implies \Delta\psi(t=\tau_{\mu})=2\times10^{-4}\implies N_{(\mu)}>1/(\Delta\psi)^2\sim10^8$$

 $10^5 \mathrm{~muons/s}$ for continuous beam, even higher intensity with pulsed beam

- $\bullet\,$ Uniform vertical magnetic field in the range $5-50{\rm Gs}$ with a possibility of reversing direction
- Co-magnetometer to monitor the magnetic field
- Liquid or gaseous target to stop the muons
- $\Delta E_{(\mu)}$ can be extracted from

$$-B\frac{d\omega_{(\mu)}/\omega_{(p)}}{dB} = \frac{\Delta E_{(\mu)}}{2\mu_p B} = 3.4 \times 10^{-4} \times \frac{\Delta E_{(\mu)}}{6 \times 10^{-14} \,\mathrm{eV}} \times \frac{10 \,\mathrm{Gs}}{B}$$

-∢ ≣ →

э.

→ Ξ →

Image: 0

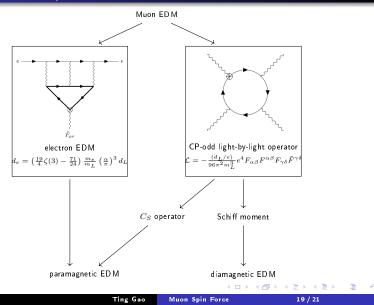
Indirect constraints on muon EDM

(Based on 2108.05398 and 2207.01679 with Y Ema and M Pospelov)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

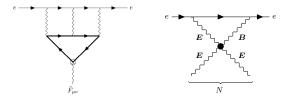
Summary

Muon EDM: Pathways to atomic EDMs



Indirect constraints on muon EDM

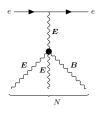
Paramagnetic EDM



$$\begin{split} |d_e^{eq}({\rm HfF^+})| &< 4.1 \times 10^{-30} e {\rm cm} \\ |d_e^{eq}({\rm HfF^+})| &\simeq 4.6 \times 10^{-10} d_\mu \\ &\Longrightarrow |d_\mu| &< 8.9 \times 10^{-21} e {\rm cm} \end{split}$$

Factor of ${\sim}20$ better than previous BNL direct measurement $|d_{\mu}| < 1.8 \times 10^{-19} e {\rm cm}$

Schiff moment



$$\begin{split} |S_{\rm Hg}| &< 3.1 \times 10^{-31} e \ {\rm fm}^3 \\ S_{199\,\rm Hg}/e &\simeq (d_\mu/e) \times 4.9 \times 10^{-7} {\rm fm}^2 \\ \Longrightarrow |d_\mu| &< 6.4 \times 10^{-20} e {\rm cm} \end{split}$$

Factor of \sim 3 better than previous BNL direct measurement

< ロ > < 同 > < 回 > < 回 >

э

Summary

- The existence of a muon spin force of the size $|\Delta E_{(\mu)}|=6\times 10^{-14} {\rm eV}$ could explain the muon g-2 anomaly
- The muon spin force can be indirectly constrained by nuclear experiments, the constraint
 - strongly rules out the pseudoscalar type of muon spin force.
 - is uncertain for axial coupling due to significant nuclear uncertainty.
- $\bullet\,$ The muon spin force can be directly probed by $\mu {\rm SR}$ experiments using stopped muons
- The same idea of loop transfer improves muon EDM bounds by a factor of 20

Thank you!

< ∃ >

э

Back up slides

Ting Gao Muon Spin Force

Image: A math a math

< ≣⇒

э.

lab-based g^N_S and supernova bounds on g^μ_A

 $|\Delta E_{(\mu)}|=6\times 10^{-14} {\rm eV}$ corresponds to $g_S(g^{(\mu)}_A+g^{(\mu)}_P)\sim 2\times 10^{-29}$ in the $1/m_\phi\gg R_{\bigoplus}$ limit.

 g^N_S is constrained by fifth-forth experiments, g^μ_A is constrained by supernova bounds

$$\begin{split} |g^N_S(\text{lab})| &< 8 \times 10^{-25} \quad \text{(MICROSCOPE Collaboration)} \\ |g^\mu_A(\text{SN})| &< 4 \times 10^{-8} \quad \text{(Robert Bollig et al 2005.07141)} \end{split}$$

The supernova bound could be relaxed when the muon has scalar interaction with ϕ

(Hooman Davoudias and Robert Szafron 2210.14959)