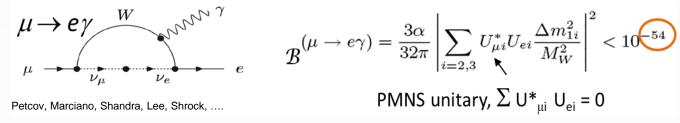
Future program of muon CLFV

Bertrand Echenard (Caltech)

Muons in Minneapolis Workshop

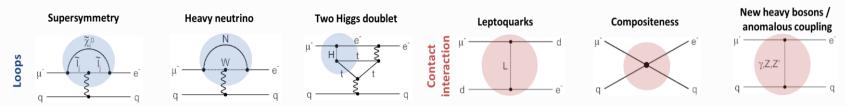
December 2023


Based on

https://arxiv.org/abs/2309.05933 https://arxiv.org/abs/2210.04765 https://arxiv.org/abs/2209.00142

Introduction

Charged lepton flavor violation (CLFV) can be generated at loop level with massive Dirac neutrinos, but rate is extremely suppressed due to GIM mechanism and tiny neutrino masses


For example:

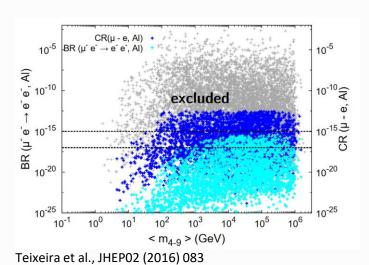
Suppression to unobservable levels is expected for other muon, tau and heavy state decays,

so an observation is clear sign of physics beyond vSM

New physics could greatly enhance these rates, e.g.

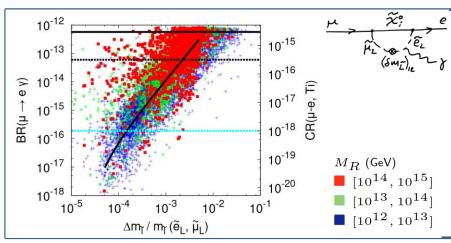
Each model generate a specific pattern of operators

→ multiple CLFV measurements to extract the underlying physics


CLFV and neutrino mass generation

Many mechanisms to generate v mass: seesaw, Zee models, RPV SUSY,...

distinct new states realized at different scales.


Low scale Seesaw: inverse seesaw

Addition of 3 "heavy" RH neutrinos and 3 extra "sterile" fermions to SM

SUSY Seesaw

CLFV induced by exchange of SUSY particles

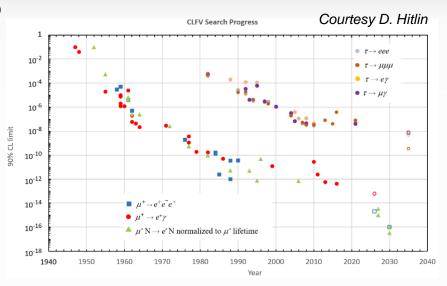
Figueiredo & Teixeira, JHEP 1041(2014) 015

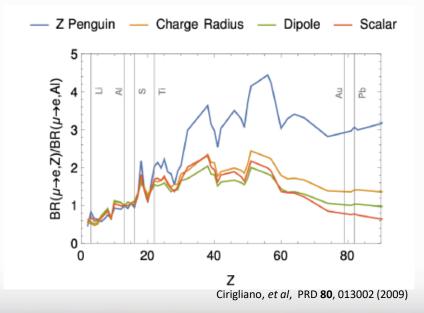
Induces sizeable CLFV rates and helps differentiate between models

Strong interplay between neutrino physics and CLFV

CLFV in muon processes

The muon has provided powerful constraints due to the availability of intense beams and the relatively long muon lifetime


Three main modes


- $\mu^+ \rightarrow e^+ \gamma$ decays
- $\mu^+ \rightarrow e^+e^-e^+$ decays
- μ - $N \rightarrow e$ -N conversion

Already probe mass scale at the level of 10³ TeV

Complementarity is key – each reaction probes different NP operators

The Z-dependence of μ $N \rightarrow e^-N$ conversion provide information about the nature of NP, effect more important at high Z

Effective field theory (EFT) calculation to analyze reach and complementarity of $\mu \to e\gamma$, $\mu \to eee$ and $\mu N \to eN$ transitions

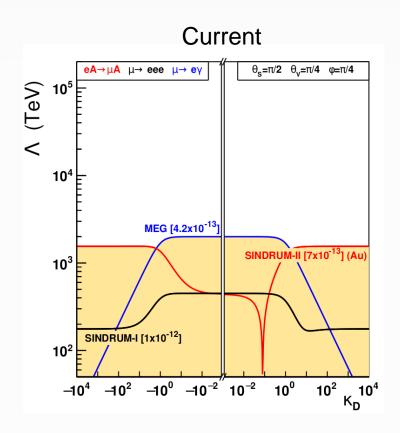
At the experimental scale m_{μ} , these processes can be described by the following effective Lagrangian, assuming $\mu N \rightarrow eN$ interactions are similar for all light or all heavy targets (taken as Al and Au for concreteness)*.

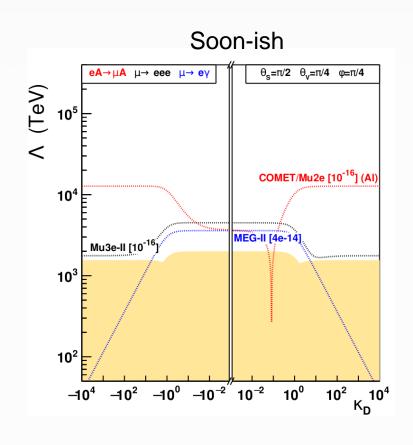
Dipole Contact
$$\mu \to eee$$
 (scalar) Contact $\mu \to eee$ (vector)
$$\delta \mathcal{L} = \frac{1}{\Lambda_{LFV}^2} \Big[C_D(\overline{e}\sigma^{\alpha\beta}P_R\mu) F_{\alpha\beta} + C_S(\overline{e}P_R\mu) (\overline{e}P_Re) + C_{VR}(\overline{e}\gamma^{\alpha}P_L\mu) (\overline{e}\gamma_{\alpha}P_Re) \\ + C_{VL}(\overline{e}\gamma^{\alpha}P_L\mu) (\overline{e}\gamma_{\alpha}P_Le) + C_{Alight}\mathcal{O}_{Alight} + C_{Aheavy\perp}\mathcal{O}_{Aheavy\perp} \Big]$$
 Contact $\mu \to eee$ (vector) Contact $\mu N \to eN$ (light N) Contact $\mu N \to eN$ (heavy N)

$$\vec{C} = \{C_D, C_S, C_{VR}, C_{VL}, C_{light}, C_{heavy}\}$$

$$C_D = \vec{C} \hat{e}_D, \dots$$

$ec{C} \cdot ec{e}_D$	$ \vec{e}_D \cos heta_D$
	$ \vec{e}_S \sin heta_D\cos heta_S$
$ec{C} \cdot ec{e}_{VL}$	$ \vec{e}_{VL}^{'} \sin\theta_{D}\sin\theta_{S}\cos\theta_{V}$
$ec{C} \cdot ec{e}_{VR}$	$ \vec{e}_{VR}^{\prime} \sin heta_{D}\sin heta_{S}\cos heta_{V}$
$ec{C} \cdot ec{e}_{Alight}$	$ \vec{e}_{Alight} \sin\theta_D\sin\theta_S\sin\theta_V\sin\phi$
$ \vec{C} \cdot \vec{e}_{Aheavy\perp} $	$ \vec{e}_{Aheavy\perp} \sin\theta_D\sin\theta_S\sin\theta_V\cos\phi$


There are many operators, but only a few measurements. A judicious choice of basis vectors in the coefficient space lets you define a four-dimensional subspace corresponding in good approximation to the rates we can measure.


Parameterize coefficient space with spherical coordinates: $|\mathcal{C}|^2 = 1$, $\mathcal{C}_D = \vec{\mathcal{C}}\hat{e}_D = |\hat{e}_D|\cos(\theta_D)$, ... and obtain constraints at the NP scale (Λ_{LEV}) using RGEs.

^{*}See Haxton et al (2109.13503) for a detailed discussion about the effect of nuclear structure on $\mu \rightarrow e$ conversion

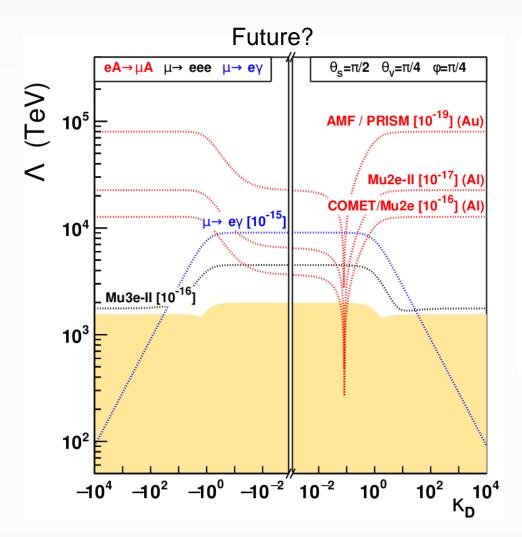
Reach and complementarity – EFT framework

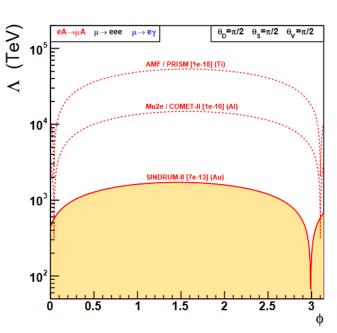
Reach and complementarity as a function of κ_D (remaining parameters representative)

 θ_{D} angle between the dipole and four-fermion type of operators

 θ_V angle between four-fermion operators on leptons or quarks

 $\theta_{\rm S}$ angle between scalar and vector operators for $\mu{
ightarrow}$ eee


angle between "light: and "heavy" operators in $\mu N \rightarrow eN$ conversion


$$\kappa_D = cotan(\theta_D - \pi/2)$$

 $|\kappa_D|$ << 1 dipole dominant $|\kappa_D|$ >> 1 four-fermion dominant

Reach and complementarity – EFT framework

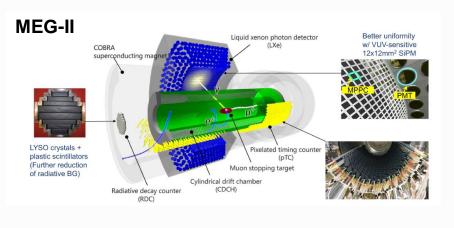
Reach and complementarity as a function of κ_D or ϕ (remaining parameters representative)

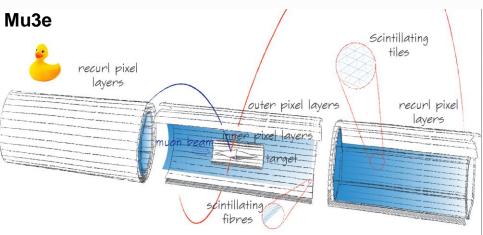
Need to measure all three modes and multiple targets for conversion

Need to push the sensitivity of the decay modes to keep up with the conversion mode

Current and next-generation initiatives

Muon decays - current situation


Two main channels


$$\mu^{\scriptscriptstyle +}\! o e^{\scriptscriptstyle +} \gamma$$
 - MEG II at PSI

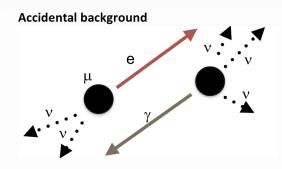
- Expected sensitivity at the level of 10⁻¹⁴
- Taking data !!!

$$\mu^{\scriptscriptstyle +} \! \to e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} e^{\scriptscriptstyle +}$$
 - Mu3e at PSI

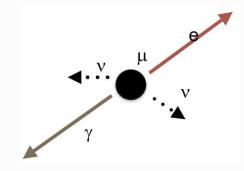
- Expected sensitivity at the level of 10⁻¹⁵ to 10⁻¹⁶ (with HiMB)
- Expect taking first data in 2024-2025 (see Ann-Katrin's talk)

The Mu3e Experiment (G. Hesketh et al. – 2204.00001), A.M. Baldini et al., EPJC 78 (2018)

Muon decays – going beyond

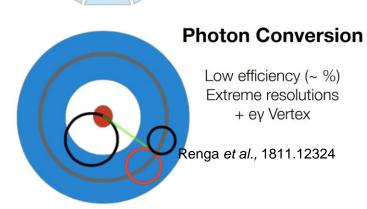

Improving the sensitivity of $\mu^+ \rightarrow e^+ \gamma$ searches (and limiting factors)

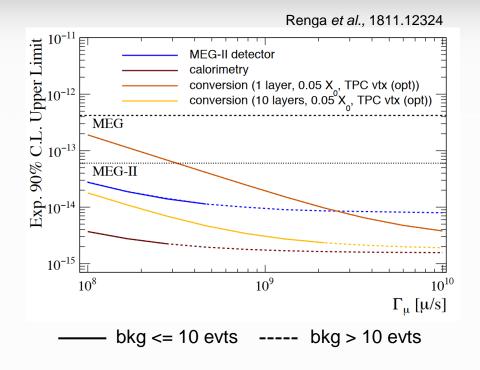
Improve detector performance to reduce backgrounds


- Accidental background scales as $\Gamma_{\rm acc} \propto \Gamma^2_{\ \mu} \ \epsilon_{\rm e} \ \epsilon_{\gamma} \ \delta E_{\rm e} \ (\delta E_{\gamma})^2 \ (\delta \Theta_{\rm e\gamma})^2 \ \delta T_{\rm e\gamma}$
- For high intensity beams, this background dominates over physics background (e.g. radiative muon decays)
- High-efficiency calorimeter or photon conversion to improve energy and angular resolution

Increase muon rate

- Current PSI muon beamline 2x10⁸ μ/s
- Proposed HiMB at PSI ~10¹⁰ μ/s
- Mu2e (+ve mode, pulsed) $\sim 10^{11} \mu/s$



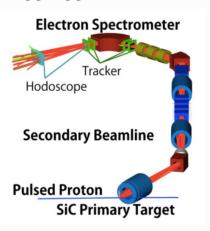

Radiative muon decay

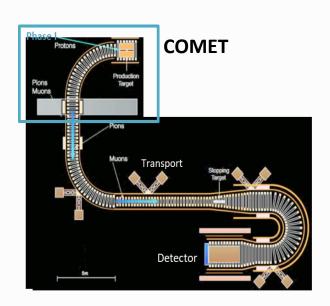
Two possible options Calorimetry

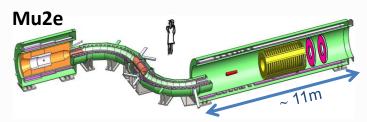
High efficiency Good resolutions MEG: LXe calorimeter 10% acceptance

New effort to design an experiment to reach 10⁻¹⁵ (MEG III?)

Taking full advantage of 10¹⁰ µ/s or more will need a novel experimental concept


Challenge: can we build an expt to search simultaneously for $\mu^+ \to e^+ \gamma$ and $\mu^+ \to e^+ e^- e^+$?


Muon conversion – current situation

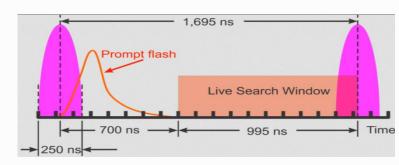

Three experiments at various stage of execution, to be completed by the end of the decade with different single event sensitivity (SES)

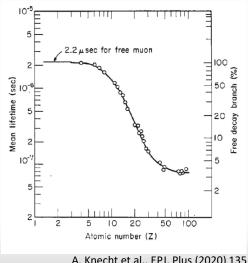
- DeeMee at J-PARC, expected SES ~ 10⁻¹⁴
- COMET at J-PARC, expected SES ~ 10⁻¹⁷
- Mu2e at FNAL, expected SES ~ 10⁻¹⁷

DeeMee

Experimental Searches for Muon to Electron Conversion ... and Mu2e (S. Middleton et al. – 2203.07089)

Muon conversion – limiting factors

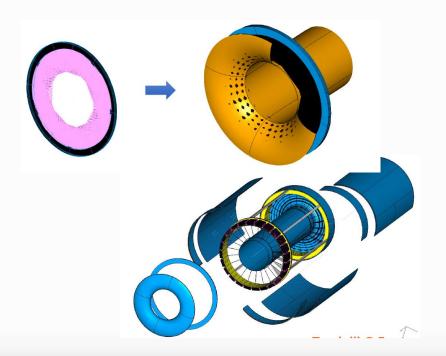

Current approach (COMET / Mu2e)


- Protons hit the production target, pions → muons captured by production solenoid (pulsed beam)
- Muons transported towards stopping target
- Muon conversion or decay products measured by detector (tracker + calorimeter)

Main limiting factors

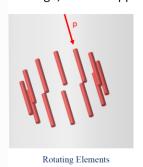
- Dead time to wait for beam-associated backgrounds to decrease to negligible level → cannot measure conversions in atoms with short muonic lifetimes (high Z)
- Need well-defined pulse beam (extinction)
- Available beam power limits muon rate, need higher intensity
- Detector performance: track momentum resolution (tracker, target), cosmic ray veto, radiation dose, trigger bandwidth...

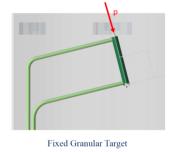
Several proposals for next generation experiments to overcome some or all of these limitations

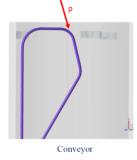

A. Knecht et al., EPJ. Plus (2020) 135

Mu2e-II at FNAL

Mu2e-II is a proposed Mu2e upgrade to take full advantage of PIP-II and improve the SES by an order of magnitude over Mu2e (i.e. SES $\sim 10^{-18}$)


Either explore higher mass scale if no observation has been made by Mu2e, or perform precision measurements with several targets in case of discovery \rightarrow **no lose scenario**

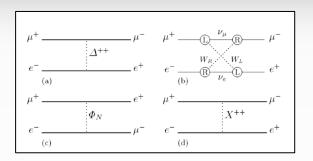

Re-use as much of Mu2e infrastructure as possible, and upgrade components required to handle higher beam intensity.



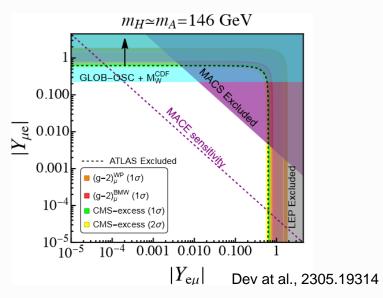
Designs under consideration

To simulate the overall target pion production performance and durability at beam induced pulsed energy deposition spikes, thermal stress, radiation damage, muon stopping rates, residual activation and radiation loads

Pion-production target for Mu2e-II | V.Pronskikh


Mu2e-II: Muon to electron conversion with PIP-II (F. Porter et al. – 2203.07569)

Muonium - antimuonium

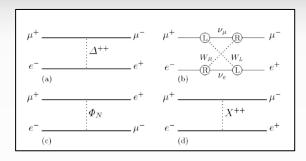

Muonium: bound state of μ^+ and e^- . Purely QED, no hadronic uncertainties

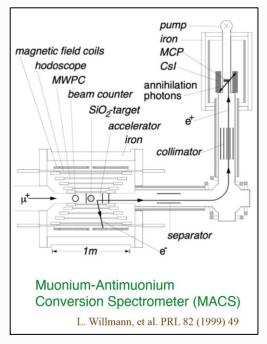
Muonium – antimuonium transitions ($\Delta L=2$) are extremely suppressed in the SM, but rates can be enhanced by NP.

Connection to $0\beta\nu\nu$ if neutrinos are Majorana particles (black box theorem - hep-ph/0608207)

Leptophilic 2HDM model

Muonium - antimuonium


Muonium: bound state of μ^+ and e^- . Purely QED, no hadronic uncertainties


Muonium – antimuonium transitions ($\Delta L=2$) are extremely suppressed in the SM, but rates can be enhanced by NP.

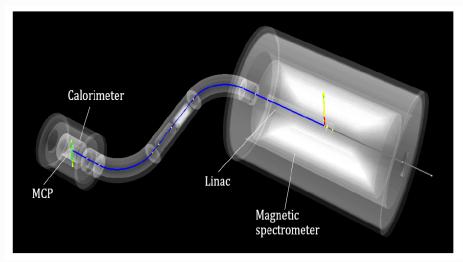
Connection to 0βνν if neutrinos are Majorana particles (black box theorem - hep-ph/0608207)

Best limits from MACS experiment (1999) based on 5.7x10¹⁰ muonium atoms

$$P(M_{\mu} \to M_{\mu}) < 8.3x10^{-11} / S_B(B_0)$$

 $G_{MMbar} < 3x10^{-3} G_F (90\% CL)$

MACE: proposal for a new muonium-antimuonium experiment based on the same principle with the goal to improve sensitivity x100


Exprimental Muon Source (EMuS) at CSNS – new facility in China

	Proton driver [MW]	Intensity $[\times 10^6/s]$	Polarization[%]	Spread [%]
PSI	1.30	420	90	10
ISIS	0.16	1.5	95	≤ 15
RIKEN/RAL	0.16	0.8	95	≤ 15
JPARC	1.00	100	95	15
TRIUMF	0.075	1.4	90	7
EMuS	0.025	83	50	10

EMuS: expect muon beam up to $10^8 \,\mu^+/s$

MACE concept

In a nutshell

- Form muonium in ablated aerogel target
- Wait for transition to antimuonium
- Reconstruct Michel electron from muon decay with spectrometer
- Accelerate shell positron to MCP
- Detect annihilation photon with calorimeter
- Triple coincidence to suppress bkgs

On-going physics studies and detector R&D

Next-to-next generation

Advanced Muon Facility

The Advanced Muon Facility (AMF) is a proposal for a new muon complex for the next generation of experiments at FNAL or J-PARC

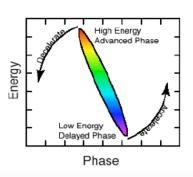
This complex would provide the world's most intense positive and negative muon beam, and enable a suite of experiments, including

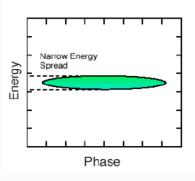
- CLFV in muon decay and transitions
- Muonium-antimuonium oscillations
- Muon spin rotation
-

This facility should provide

- Lowest possible momentum and small Δp to reduce the thickness of a stopping target
- Pure muon beam to reduce backgrounds
- Pulsed or continuous muon beams

This could be achieved with a small muon storage ring based on a fixed field alternating gradient (FFA) synchrotron with phase rotation (PRISM concept).

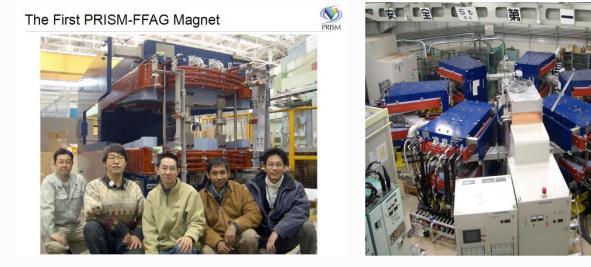

A surface muon beam could also provide a low-momentum, monochromatic beam for positive muons (e.g. HIMB at PSI), but the FFA option might work for both charges

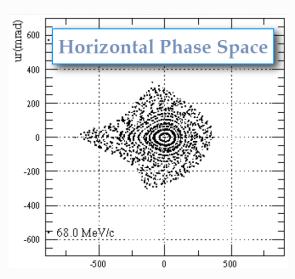

PRISM concept

New beam for conversion experiment, based on the PRISM (Phase Rotated Intense Slow Muon beam) concept proposed by Y. Kuno and Y. Mori

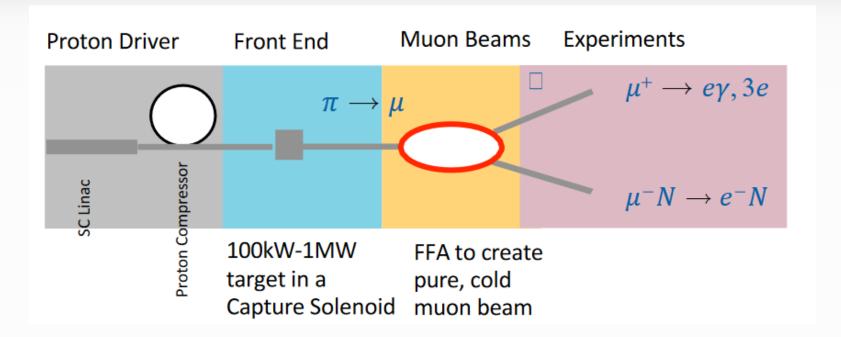
PRISM concept:

- High intensity (MW) proton beam with very short pulse duration hit target in a capture solenoid, producing $\pi \rightarrow \mu$
- · Inject muons into a fixed-field alternating gradient (FFA) ring
- Phase rotates to reduce the beam energy spread (slow down leading edge, accelerate trailing edge)
- Pion contamination is drastically reduced during phase rotation $(O(\mu s))$
- Extract purified muon beam to detector

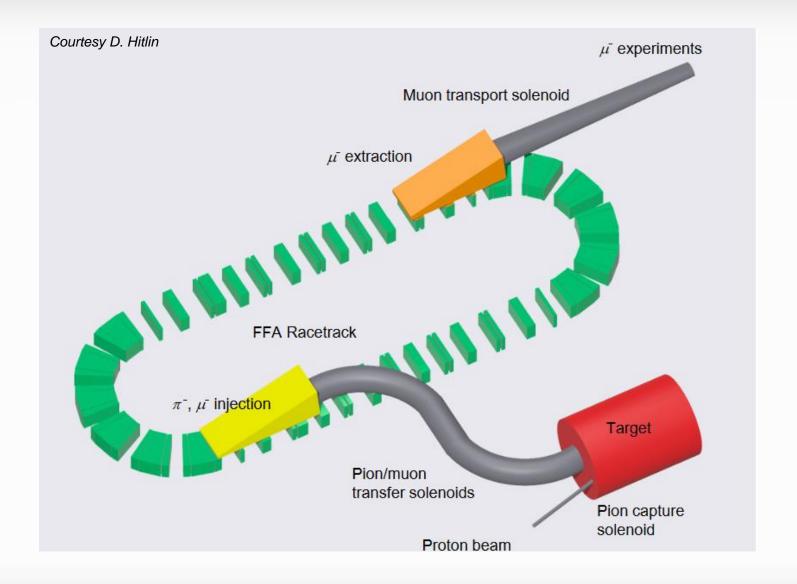



Requires a compressed proton bunch and high power beam to achieve high μ rate

FFA – R&D work in Osaka (MUSIC)


PRISM FFA - proof of concept

- 10 cell DFD ring has been designed
- FFA magnet-cell has been constructed and verified
- RF system has been tested and assembled
- 6 cell ring was assembled and its optics was verified with α particles
- Phase rotation was demonstrated for α particles


Pasternak et al., https://indico.phys.vt.edu/event/34/contributions/685/attachments/529/625/PRISM_nufact18.pdf
A. Alekou et al., arxiv: 1310.0804

Several concepts have been proposed for the FFA, including circular or racetrack geometries, scaling or non-scaling options, μ + and μ - simultaneously,...

Strong synergies with the muon collider for the development of a target station

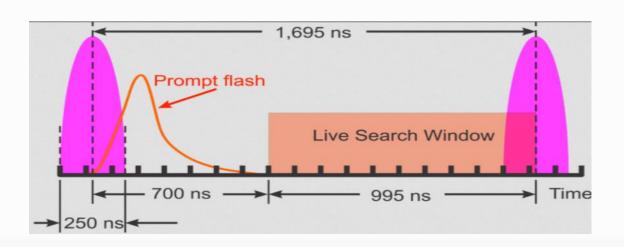
AMF – a conceptual design

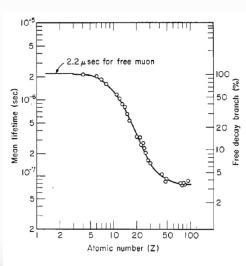
Taking advantage of the FFA

Take advantage of cold, monochromatic, pure muon beam at the exit of the FFA for conversion experiments

No beam-induced background

Pions decay in the FFA – corresponding background is extremely suppressed


No beam flash, antiprotons, delayed electrons, muon decay in flight,...



Can measure short muonic atom lifetime → high Z material

No stringent requirements on outof-time protons

Less radiation in the detector

Taking advantage of the FFA

Take advantage of cold, monochromatic, pure muon beam at the exit of the FFA for conversion experiments

No beam-induced background

Pions decay in the FFA – corresponding background is extremely suppressed

No beam flash, antiprotons, delayed electrons, muon decay in flight,...

Can measure short muonic atom lifetime → high Z material

No stringent requirements on outof-time protons

Less radiation in the detector

Cold beam

Use thinner stopping target to stop muons, ideally a single thin foil → reduce energy loss fluctuations in target material

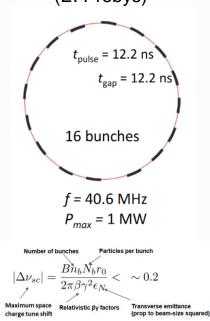
 \rightarrow

Improved momentum resolution, better muon DIO rejection

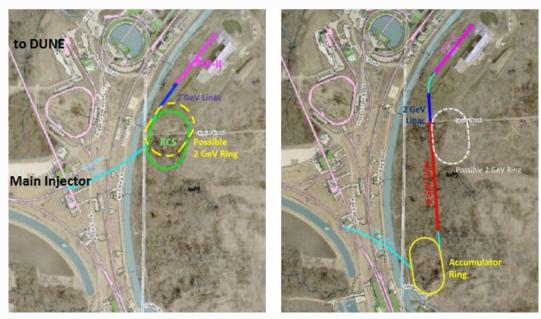
Low duty cycle

100 - 1000 Hz instead of MHz

Reduce cosmic induced backgrounds


Compressor ring and ACE program

PIP-II at FNAL is an ideal accelerator to provide the MW proton beam for AMF, but the continuous beam structure is not optimal


Need a compressor ring to provide short (~10 ns), intense pulses

A few possibilities have been proposed, including in the context of the FNAL accelerator complex evolution (ACE) proposal

Compressor ring for PIP-II (E. Prebys)

Potential 2 GeV ring for different upgrade scenarios

 $https://indico.fnal.gov/event/59663/attachments/167657/224734/Report_from_the_Fermilab_Proton_Intensity_Upgrade_Central_Design_Group-FN-1229.pdf$

Challenges

Many challenges remain to be solved...

FFA ring design

- large aperture and acceptance elements
- vertical plane muon beam injection / extraction

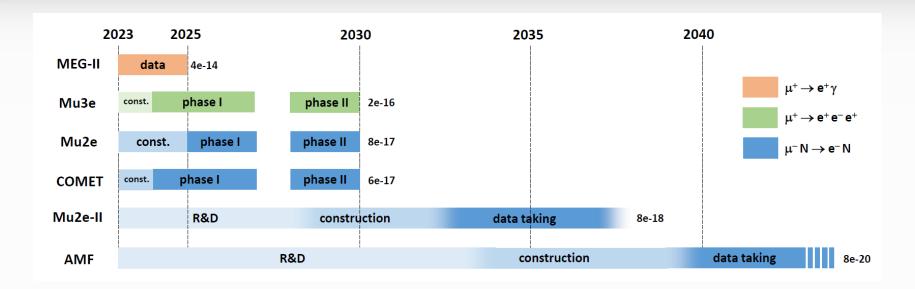
Target and capture system

- MW class target in a solenoid very challenging conditions
- in full synergy with the Neutrino Factory and a Muon Collider

Design of the muon beam transport from the solenoidal capture to the FFA ring

- very different beam dynamics conditions
- very large beam emittances and the momentum spread

Muon beam injection/extraction into/from the FFA ring


very large beam emittances and the momentum spread

Compressor ring

Fast kicker to transfer beam from compressor ring at 1kHz

Synergies with the development of a muon collider and/or neutrino factory

Potential timeline

We plan to form a team to address these challenges and develop a concept for AMF as part the Fermilab complex and program

This includes the development on experimental concepts as the design of the accelerator system matures

New ideas for exploiting the physics potential of this facility are welcome – don't be shy!

https://arxiv.org/abs/2309.05933 https://arxiv.org/abs/2210.04765

The future of muon CLFV searches is bright

The Advanced Muon Facility rocks!

Get in touch if you are interested or have new ideas for this facility!

Extra material

More references

Next generation MW muon facility at FNAL

A New Charged Lepton Flavor Violation Program at Fermilab

https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-AF5_AF0_Robert_Bernstein-027.pdf

A Phase Rotated Intense Source of Muons (PRISM) for a $\mu \rightarrow e$ Conversion Experiment

https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-AF5_AF0_J_Pasternak-096.pdf

Bunch Compressor for the PIP-II Linac

https://www.snowmass21.org/docs/files/summaries/AF/SNOWMASS21-AF5_AF0-RF5_RF0_Prebys2-203.pdf

Muon decays

The MEG II experiment and its future development

https://www.snowmass21.org/docs/files/summaries/ RF/SNOWMASS21-RF5_RF0_MEGII-062.pdf

A new experiment for the $\mu \rightarrow e\gamma$ search

https://www.snowmass21.org/docs/files/summaries/ RF/SNOWMASS21-RF5_RF0_Tassielli-067.pdf

Mu2e-II

Mu2e-II

https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5 RF0 Frank Porter-106.pdf

Low-E facility at FNAL

Upgraded Low-Energy Muon Facility at Fermilab

https://www.snowmass21.org/docs/files/summaries/ RF/SNOWMASS21-RF0-AF0-007.pdf

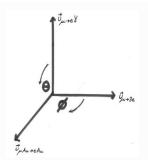
High intensity muon beam (HiMB) at PSI

Towards an High intensity Muon Beam (HiMB) at PSI

https://indico.cern.ch/event/577856/contributions/3420391/attachments/1879682/3097488/Papa HiMB EPS2019.pdf

HIMB Physics Case Workshop

https://indico.psi.ch/event/10547/timetable/?view=standard


S. Davidson, BE, 2204.00564

Parameterize coefficient space with spherical coordinates: $|C|^2 = 1$, $C_D = \vec{C}\hat{e}_{DR} = \cos(\theta_D)$, ... and obtain constraints at the NP scale (Λ_{LEV}) using RGEs.

$$\begin{aligned} \mathrm{BR}(\mu \to e_L \gamma) &= 384 \pi^2 \frac{v^4}{\Lambda_{LFV}^4} \left[|\vec{e}_D| \cos \theta_D \right]^2 \\ \mathrm{BR}(\mu \to e \bar{e} e) &= \frac{v^4}{\Lambda_{LFV}^4} \left[\frac{|\vec{e}_S|^2 \sin^2 \theta_D \cos^2 \theta_S}{8} + (|\vec{e}_{VR}^{'}| \sin \theta_D \sin \theta_S \cos \theta_V + 4e |\vec{e}_D| \cos \theta_D)^2 \right. \\ &\quad + 2(|\vec{e}_{VL}^{'}| \sin \theta_D \sin \theta_S \cos \theta_V + 4e |\vec{e}_D| \cos \theta_D)^2 + 18.76(|\vec{e}_D| \cos \theta_D)^2 \right] \\ \mathrm{BR}(\mu A l \to e A l) &= \frac{6144 \pi^3 v^4}{2.197 g_{A l}^{cap} \Lambda_{LFV}^4} \left[|\vec{u}_{A l}| |\vec{e}_{A l}| \sin \theta_D \sin \theta_S \sin \theta_V \sin \phi + \frac{D_{A l}}{4} |\vec{e}_D| \cos \theta_D \right]^2 \\ \mathrm{BR}(\mu A u \to e A u) &= \frac{6144 \pi^3 v^4}{2.197 g_{A u}^{cap} \Lambda_{LFV}^4} \left[|\vec{u}_{A u}| (\cos \theta_{A u A l} |\vec{e}_{A l}| \sin \theta_D \sin \theta_S \sin \theta_V \sin \phi + \sin \theta_{A u A l} |\vec{e}_{\perp}| \sin \theta_D \sin \theta_S \sin \theta_V \cos \phi \right) + \frac{D_{A u}}{4} |\vec{e}_D| \cos \theta_D \right]^2 \end{aligned}$$

Spherical coordinate parameterization

$ec{C} \cdot ec{e}_D$	$ \vec{e}_D \cos\theta_D$
	$ \vec{e}_S \sin heta_D\cos heta_S$
$ec{C} \cdot ec{e}_{VL}$	$ \vec{e}'_{VL} \sin\theta_D\sin\theta_S\cos\theta_V$
$ec{C} \cdot ec{e}_{VR}$	$ \vec{e}'_{VR} \sin\theta_D\sin\theta_S\cos\theta_V$
$ec{ec{C}} \cdot ec{e}_{Alight}$	$ \vec{e}_{Alight} \sin \theta_D \sin \theta_S \sin \theta_V \sin \phi$
$\vec{C} \cdot \vec{e}_{Aheavy\perp}$	$\begin{aligned} \vec{e}_{VR} \sin \theta_D \sin \theta_S \cos \theta_V \\ \vec{e}_{Alight} \sin \theta_D \sin \theta_S \sin \theta_V \sin \phi \\ \vec{e}_{Aheavy\perp} \sin \theta_D \sin \theta_S \sin \theta_V \cos \phi \end{aligned}$

- θ_{D} $\;$ angle between the dipole and four-fermion type of operators
- θ_V angle between four-fermion operators on leptons or quarks
- $\theta_{\rm S}$ angle between scalar and vector operators for $\mu \rightarrow eee$
- ϕ angle between "light: and "heavy" operators in $\mu N \rightarrow e N$ conversion