

Ann-Kathrin Perrevoort (Mu3e) | Muons in Minneapolis 2023 | Dec 7, 2023

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Lepton Flavour Violation

as a sign for Physics Beyond the SM

- Lepton flavour is an accidental symmetry of the Standard Model (SM)
 - \ldots and often violated in beyond SM (BSM) models
- charged LFV (cLFV) is heavily suppressed if only ν mixing is considered:

$$\mathscr{B}_{\mu \to eee} \propto \left(\frac{\Delta m_{\nu}^2}{m_W^2} \right)^2 \quad \to \quad \mathscr{B}_{\mu \to eee} < 10^{-54}$$

⇒ Observation would be an unambiguous sign of BSM physics

Lepton Flavour Violation with Muons

- High-intensity muon sources paired with dedicated high-precision experiments
- Current limits at $\mathscr{B} < 10^{-12}$ to 10^{-13}
- Prospected sensitivities in the range of 10^{-15} to 10^{-17} at near-future experiments
- Interpreted in effective field theories (EFT), μ LFV searches test $\mathscr{O}(\Lambda) = 10^5 \text{ TeV}$

Adapted from [Ann.Rev.Nucl.Part.Sci 58 (2008) 315-341]

Mu3e Experiment Goals and Challenges

- Current strongest limit: $\mathscr{B}(\mu \rightarrow eee) < 1.0 \times 10^{-12}$ at 90% CL (SINDRUM, 1988)
- Mu3e will perform a background-free search for $\mu \to eee$ and aims to find or exclude the decay with a sensitivity in \mathscr{B} of

```
a few 10^{-15} in phase I 10^{-16} in phase II
```

- Challenges
 - Background suppression
 - High muon decay rates

Signal and Background

e⁺

- Signal $\mu^+ \rightarrow e^+ e^- e^+$
- Same vertex, coincident
- Decay at rest
 - $\sum P_e = (m_\mu, 0, 0, 0)$ • $\mathscr{O}(\vec{p}_e) = 10 \text{ MeV}$

- Accidental combinations of e^+ from $\mu \rightarrow e\nu\nu$ with e^- or e^+e^- from Bhabha scattering, photon conversion, mis-reconstruction
- Need good timing and vertexing, low material

- Background from rare decay: $\mathscr{B}(\mu \rightarrow eee\nu\nu) = 3.4 \times 10^{-5}$
- Missing momentum due to neutrinos
- Need excellent momentum resolution

Track Reconstruction

- Low energy e^+/e^- affected by multiple Coulomb scattering
 - Energy loss and deflection

Momentum resolution is dominated by scattering not pixel size

$$\frac{\sigma_p}{p} \propto \frac{\theta_{\rm MS}}{\Omega}$$

- 'Recover' momentum resolution
 - Consider scattering in track reconstruction
 - Low material
 - $\hfill Optimized geometry, i.e. large lever arm <math display="inline">\Omega$

Track Reconstruction

- Low energy e^+/e^- affected by multiple Coulomb scattering
 - Energy loss and deflection

Momentum resolution is dominated by scattering not pixel size

$$\frac{\sigma_p}{p} \propto \frac{\theta_{\rm MS}}{\Omega}$$

- 'Recover' momentum resolution
 - Consider scattering in track reconstruction
 - Low material
 - $\hfill Optimized geometry, i.e. large lever arm <math display="inline">\Omega$

Track Reconstruction

- Low energy e^+/e^- affected by multiple Coulomb scattering
 - Energy loss and deflection

Momentum resolution is dominated by scattering not pixel size

$$\frac{\sigma_p}{p} \propto \frac{\theta_{\rm MS}}{\Omega}$$

- 'Recover' momentum resolution
 - Consider scattering in track reconstruction
 - Low material
 - $\hfill Optimized geometry, i.e. large lever arm <math display="inline">\Omega$

Muons stopped on target
 → decay at rest

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

 4 layers of ultra-thin silicon pixel sensors

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

 4 layers of ultra-thin silicon pixel sensors

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- 4 layers of ultra-thin silicon pixel sensors
- Timing with scintillating fibres

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- 4 layers of ultra-thin silicon pixel sensors
- Timing with scintillating fibres
- Recurl-stations with pixel sensors

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- 4 layers of ultra-thin silicon pixel sensors
- Timing with scintillating fibres
- Recurl-stations with pixel sensors and scintillating tiles

- Muons stopped on target
 → decay at rest
- Track e⁺/e⁻ trajectories in 1 T solenoidal field

- 4 layers of ultra-thin silicon pixel sensors
- Timing with scintillating fibres
- Recurl-stations with pixel sensors and scintillating tiles
- Cooling with gaseous Helium
- 120 cm long, 18 cm diameter

Muon Beam

- Mu3e will be hosted at the Paul Scherrer Institute (PSI)
- PSI is home of world's most intense continuous muon beam
- Cyclotron produces 2.2 mA proton beam with 590 MeV
- Production of pions and muons on Carbon target
- Continuous, sub-surface μ^+ with 28 MeV $10^8 \ \mu/s$ at Compact Muon Beamline (CMB) $10^{10} \ \mu/s$ with the future High Intensity Muon Beams (HIMB) project (2029+)

Karlsruhe Institute of Technology

Stopping Target

- Distribute muon stops over large surface
- Reduce material traversed by decay products
- Hollow, double-cone target made from Mylar
- \blacksquare 100 mm long, $\varnothing=38$ mm, 70 $\mu m/80\,\mu m$ thick
- Stopping rate of 95.5 %

- Solenoid magnet with 1.0 T nominal field (range 0.5 T to 2.7 T)
- Warm bore: $L = 2.7 \text{ m}, \ \emptyset = 1.0 \text{ m}$
- Homogeneous magnetic field: $\frac{\Delta B}{B} < 10^{-3}$

Pixel Detector

- Custom designed MuPix sensor
- High Voltage Monolithic Active Pixel Sensor (HV-MAPS)
- Fast charge collection in small active region
- Fully integrated digital readout
- Thinned to 50 µm only 1.15 ‰ of radiation length incl. flexprint and support structure
- Active sensor size $2 \text{ cm} \times 2 \text{ cm}$ Pixel size $80 \,\mu\text{m} \times 80 \,\mu\text{m}$
- Full production of final MuPix11 almost finished
- Pre-production of modules

Karlsruhe Institute of Technology

Timing Detectors

- Scintillating fibres with SiPMs in central station
 - $\bullet~$ 30 cm long ribbons with 3 layers of 250 μm fibres
 - 128ch SiPM column arrays
- Readout with custom MuTRiG ASIC

- Scintillating tiles with SiPMs in recurl stations
 - 6 mm × 6 mm × 5 mm cubes wrapped in ESR reflective foil
 - Photon detection with SiPMs
- Readout with MuTRiG

Data Acquisition

- Triggerless, continuous readout of all sub-detectors
- Filter farm sees whole detector information for a time slice
 - Track reconstruction in central detector and vertex finding on GPUs
 - Events with $\mu \rightarrow eee$ candidates are sent off to mass storage
 - Data reduction by a factor of 80
- Tested in integration and cosmics runs
- Full integration of timing data and upscaling ongoing

Karlsruhe Institute of Technology

Data Acquisition

- Triggerless, continuous readout of all sub-detectors
- Filter farm sees whole detector information for a time slice
 - Track reconstruction in central detector and vertex finding on GPUs
 - Events with $\mu \rightarrow eee$ candidates are sent off to mass storage
 - Data reduction by a factor of 80
- Tested in integration and cosmics runs
- Full integration of timing data and upscaling ongoing

Phase II

High-Intensity Muon Beams (HIMB) project at PSI

- New target and new capturing solenoids
- Muon rates of $10^{10} \, \mu/{
 m s}$
- Shutdown for installation in 2027-2028
- Planned to be operational in 2029

see PSI Bericht Nr. 22-01 (2022) and arXiv:2111.05788

Phase II Detector

Goal: Reach final sensitivity of 10^{-16} with upgraded phase II detector

• To be operated at $2 \times 10^9 \,\mu/s$ at HIMB

Recurl pixel lavers Scintillator tiles

- Accidental background becomes a challenge
- Longer target

- Elongated recurl station
- SciFi replaced by ultrafast pixel layer (SiGe)
- Improved online reconstruction and filtering

Karlsruhe Institute of Technology

Sensitivity Studies

- Full Geant4 based detector simulation
- Track reconstruction and vertex fitting in place

- Full Geant4 based detector simulation
- Track reconstruction and vertex fitting in place
- Reconstruction of recurling tracks pays off
- Improvement in $\frac{\sigma_p}{p}$ by up to a factor 10
- Require 3 recurling tracks for reconstructed m_{eee}

115

Phase I, 3 recurlers

- Simulated full phase I data taking
- Sensitivities to *B* in the range of 10⁻¹⁴ to a few 10⁻¹⁵ at 90 % CL in reach

Mu3e Phase I Simulation

15/21 Minneapolis 2023 Ann-Kathrin Perrevoort: Mu3e m_{rec} [MeV/ c^2]

110

- Simulated full phase I data taking
- Sensitivities to *B* in the range of 10⁻¹⁴ to a few 10⁻¹⁵ at 90 % CL in reach

- Three golden muon LFV channel: $\mu \rightarrow e\gamma, \ \mu \rightarrow eee, \ \mu N \rightarrow eN$
- Each channel has specific strengths and weaknesses
- Comparison by means of effective field theories: $\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{1}{\Lambda} \sum \mathcal{O}_{\mathsf{5-dim}} + \frac{1}{\Lambda^2} \sum \mathcal{O}_{\mathsf{6-dim}} + \dots$

- Three golden muon LFV channel: $\mu \rightarrow e\gamma, \ \mu \rightarrow eee, \ \mu N \rightarrow eN$
- Each channel has specific strengths and weaknesses
- Comparison by means of effective field theories: $\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{1}{\Lambda} \sum \mathcal{O}_{\mathsf{5-dim}} + \frac{1}{\Lambda^2} \sum \mathcal{O}_{\mathsf{6-dim}} + \dots$

Pin down type of BSM interaction by combination of the searches

- In case of discovery
 - Exchange target in $\mu N \rightarrow eN$
 - Dalitz plots, asymmetry ratios and resonance searches in $\mu \rightarrow eee$

- Three golden muon LFV channel: $\mu \rightarrow e\gamma, \ \mu \rightarrow eee, \ \mu N \rightarrow eN$
- Each channel has specific strengths and weaknesses
- Comparison by means of effective field theories: $\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{1}{\Lambda} \sum \mathcal{O}_{\mathsf{5-dim}} + \frac{1}{\Lambda^2} \sum \mathcal{O}_{\mathsf{6-dim}} + \dots$

Pin down type of BSM interaction by combination of the searches

- In case of discovery
 - Exchange target in $\mu N \rightarrow eN$
 - Dalitz plots, asymmetry ratios and resonance searches in $\mu \to eee$

- Three golden muon LFV channel: $\mu \rightarrow e\gamma, \ \mu \rightarrow eee, \ \mu N \rightarrow eN$
- Each channel has specific strengths and weaknesses
- Comparison by means of effective field theories: $\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{1}{\Lambda} \sum \mathcal{O}_{\mathsf{5-dim}} + \frac{1}{\Lambda^2} \sum \mathcal{O}_{\mathsf{6-dim}} + \dots$

Pin down type of BSM interaction by combination of the searches

- In case of discovery
 - Exchange target in $\mu N \rightarrow eN$
 - Dalitz plots, asymmetry ratios and resonance searches in $\mu \rightarrow eee$

Mu3e is a versatile muon physics experiment

- Capable to measure $e^{+/-}$ with excellent resolution at high rates
- Large dataset of polarised (\sim 85 %) muon decays with broad geometric and kinematic coverage

Mu3e is a versatile muon physics experiment

- Capable to measure $e^{+/-}$ with excellent resolution at high rates
- \blacksquare Large dataset of polarised (~85 %) muon decays with broad geometric and kinematic coverage
- Offline data set
 - At least 2 e^+ and 1 e^- with $p_T > 10 \text{ MeV}$
 - Full, raw detector information
 - Optimum momentum resolution
 - Agnostic wrt to additional (in)visible particles
 - Ex.: $\mu \rightarrow eee\nu\nu$, $\mu \rightarrow ea$ with $a \rightarrow ee$, $\mu \rightarrow eA'\nu\nu$ with $A' \rightarrow ee$, $\mu \rightarrow eeeee$

Karlsruhe Institute of Technology

Mu3e is a versatile muon physics experiment

- Capable to measure $e^{+/-}$ with excellent resolution at high rates
- \blacksquare Large dataset of polarised (~85 %) muon decays with broad geometric and kinematic coverage
- Offline data set
 - At least 2 e^+ and 1 e^- with $p_{\rm T} > 10 \, {\rm MeV}$
 - Full, raw detector information
 - Optimum momentum resolution
 - Agnostic wrt to additional (in)visible particles
 - Ex.: $\mu \to eee\nu\nu$, $\mu \to ea$ with $a \to ee$, $\mu \to eA'\nu\nu$ with $A' \to ee$, $\mu \to eeeee$

- All tracks reconstructed online
 - Histograms of track fit results (p, ϕ , θ , q, ...)
 - No raw data, only reconstructed
 - Limited momentum resolution (short tracks)
 - Ex.: $\mu \rightarrow eX$

Karlsruhe Institute of Technology

Mu3e is a versatile muon physics experiment

- Capable to measure $e^{+/-}$ with excellent resolution at high rates
- \blacksquare Large dataset of polarised (~85 %) muon decays with broad geometric and kinematic coverage
- Offline data set
 - At least 2 e^+ and 1 e^- with $p_{\rm T} > 10\,{\rm MeV}$
 - Full, raw detector information
 - Optimum momentum resolution
 - Agnostic wrt to additional (in)visible particles
 - Ex.: $\mu \rightarrow eee\nu\nu$, $\mu \rightarrow ea$ with $a \rightarrow ee$, $\mu \rightarrow eA'\nu\nu$ with $A' \rightarrow ee$, $\mu \rightarrow eeeee$

Fig. taken from arXiv:2306.15631

- All tracks reconstructed online
 - Histograms of track fit results (p, ϕ , θ , q, ...)
 - No raw data, only reconstructed
 - Limited momentum resolution (short tracks)
 - Ex.: $\mu \rightarrow eX$
- Possible modifications (in conflict with $\mu \rightarrow eee$ search)
 - Change *B* field (0.5 T to 2.7 T)
 - Add photon conversion layer, extra pixel layers
 - Change beam to pions
 - ...

More Physics with Mu3e ALPs with Lifetime

- Axion-like particle with lifetime:
 - $\mu^+ \to e^+ a \text{ with } a \to e^+ e^-$ [Heeck, Rodejohann, Phys.Lett.B 776 (2018) 385-390]
- Same final state as $\mu \rightarrow eee$
- In acceptance if decay within first vertex layer
- Back-to-back e^+ and e^+e^- pair
- Sufficient efficiency with default $\mu \to eee$ vertex reconstruction for lifetimes up to $\mathscr{O}(1\,\mathrm{ns})$

More Physics with Mu3e ALPs with Lifetime

- Axion-like particle with lifetime: $\mu^+ \rightarrow e^+ a$ with $a \rightarrow e^+ e^-$ [Heeck, Rodejohann, Phys.Lett.B 776 (2018) 385-390]
- Same final state as $\mu \rightarrow eee$
- In acceptance if decay within first vertex layer
- Back-to-back e^+ and e^+e^- pair
- Sufficient efficiency with default $\mu \to eee$ vertex reconstruction for lifetimes up to $\mathscr{O}(1\,\mathrm{ns})$

More Physics with Mu3e Dark Photons

- Search for e^+e^- resonance in $\mu \rightarrow eee\nu\nu$
- Example: Dark photon emitted in muon decays with prompt decay μ → eA'νν with A' → ee

 Background from µ → eeevv and Bhabha scattering events

Lagrangian from Echenard, Essig, Zhong, JHEP 01 (2015) 113

More Physics with Mu3e Dark Photons

- Search for e^+e^- resonance in $\mu \rightarrow eee\nu\nu$
- Example: Dark photon emitted in muon decays with prompt decay
 μ → eA'νν with A' → ee

 Background from µ → eeevv and Bhabha scattering events

More Physics with Mu3e Familons

- Search for $\mu^+ \rightarrow e^+ X^0$ decays
- Ex: Familon [Wilczek, PRL 49 (1982) 1549]

M^t e⁺

- Single-*e* events do not pass online event selection
- Histogramming on filter farm
- Online calibration with Mott scattering as alternative to Michel spectrum

More Physics with Mu3e Familons

- Search for $\mu^+ \rightarrow e^+ X^0$ decays
- Ex: Familon [Wilczek, PRL 49 (1982) 1549]

- Single-*e* events do not pass online event selection
- Histogramming on filter farm
- Online calibration with Mott scattering as alternative to Michel spectrum

Summary

- Mu3e phase I aims to find or exclude the LFV decay $\mu \rightarrow eee$ with \mathscr{B} as low as a few 10^{-15}
- $\hfill Low-mass tracking detector operated at <math display="inline">10^8\,\mu/s$
- Online event reconstruction and filtering
- Planning to take data in 2025 & 2026
- Phase II after HIMB installation (2029+) aiming at sensitivity of 10⁻¹⁶

We can investigate more than $\mu \rightarrow eee!$ Any ideas? Get in touch!

Checkout https://www.psi.ch/en/mu3e for more details

