MuonBridge: EFT PREDICTIONS FOR $\mu \rightarrow e$ CONVERSION

> JURE ZUPAN U. OF CINCINNATI

> > 1

based on Haxton, McElvain, Menzo, Rule, JZ, 2312.nnnn

Muons in Minneapolis, UMN, Dec 7 2023

GOALS FOR THIS TALK

- provide an EFT based prediction for $\mu \rightarrow e$ conversion
 - assumption: heavy new physics $\Lambda \gg m_{\mu}$
- open source code MuonBridge

OVERVIEW

- scales in the problem
 - tower of EFTs, focus on physics below $\mu = 2 \text{ GeV}$
- two NP examples
- some comments about the code

KINEMATICS

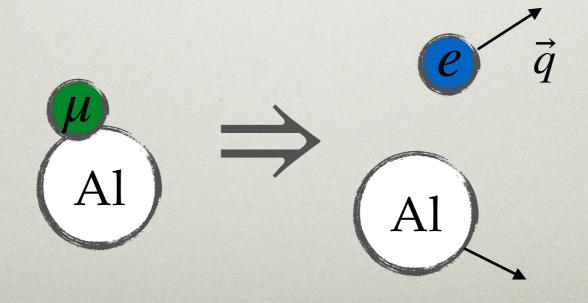
- initial state: μ^- in 1s orbital
- final state: relativistic e^- with three momentum

$$\vec{q}^{2} = \frac{M_{T}}{m_{\mu} + M_{T}} \left[\left(m_{\mu} - E_{\mu}^{\text{bind}} \right)^{2} - m_{e}^{2} \right],$$

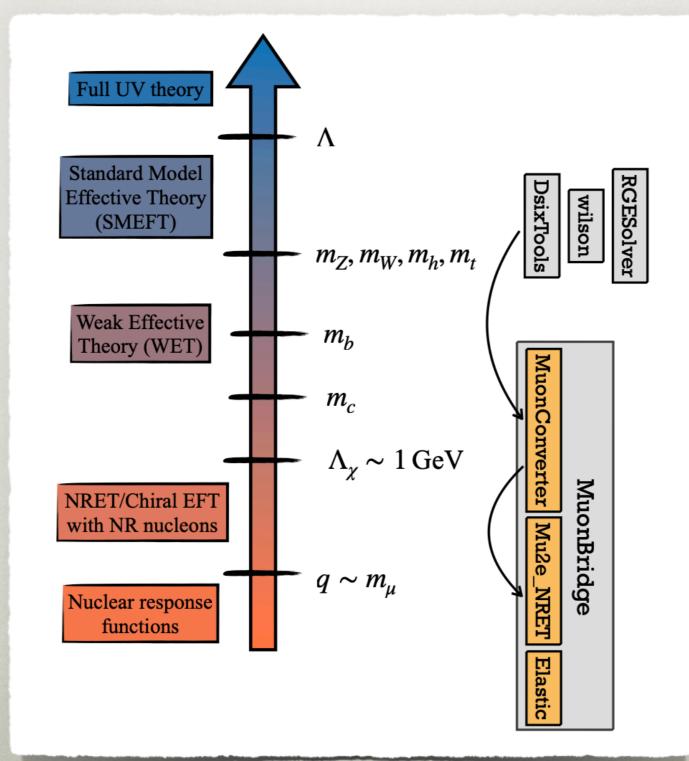
•
$$E_{\mu}^{\text{bind}} \ll m_{\mu} \text{ (for }^{27}\text{Al } E_{\mu}^{\text{bind}} \simeq 0.463 \text{ MeV})$$

 $\Rightarrow |\vec{q}| \sim \mathcal{O}(100 \text{ MeV})$

• we limit the discussion to processes where nucleus is in ground state

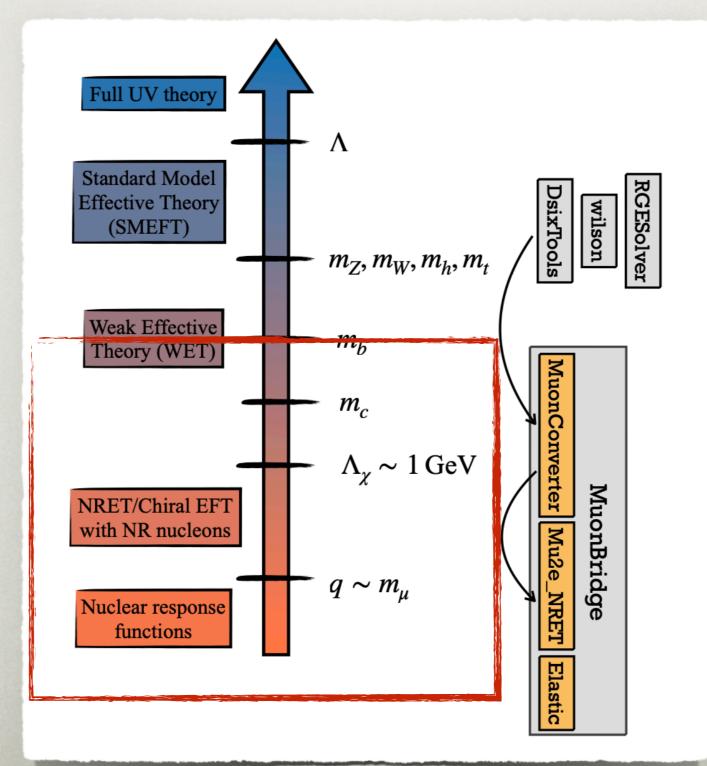


TOWER OF EFTS



5

TOWER OF EFTS



5

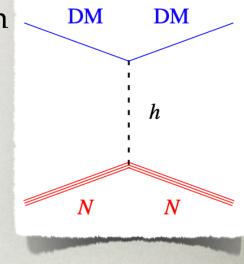
SEVERAL COMMENTS

- the tower of EFTs very reminiscent of wimpy DM direct detection
 - instead of nonrelativistic outgoing DM \Rightarrow relativistic e^-
 - instead of \vec{q}/m_N in NRET we have unit vector \hat{q}
- bound muon is approximately nonrelativistic for Al
 - relativistic corrections controlled by $Z\alpha/2$
 - included by including \vec{v}_{μ} suppressed terms (lower componenst of Dirac w.f.)
- nucleons bound inside nucleus are roughly nonrel., with $v_{avg} \approx 0.2$
- outgoing e⁻ is not a pure plane wave, due to potential from nuclear charge Z
 - at the origin a plane wave with $q_{\rm eff}$ instead of q

$$e^{i\vec{q}\cdot\vec{r}}
ightarrow rac{q_{\mathrm{eff}}}{q} e^{i\vec{q}_{\mathrm{eff}}\cdot\vec{r}}$$
 for ²⁷Al: $q = 104.98 \,\mathrm{MeV}$
 $q_{\mathrm{eff}} = 110.81 \,\mathrm{MeV}$

6

J. Zupan MuonBridge...



Muons@Minneapolis, Dec 7, 2023

TOWER OF EFTS

- below $\mu = 2 \text{ GeV}$ a series of EFTs
 - Weak Effective Theory (WET): d.o.f.s quarks and gluons Haxton, McElvain, Menzo, Rule, JZ, 2312.nnnn
 - (Covariant EFT with relativistic nucleons)
 - Haxton, McElvain, Ramsey-Mussolf, Rule, 2208.07945
 NRET: d.o.f.s non-rel nucleons Haxton, McElvain, Rule, 2109.13503
 - (Chiral EFT for nucleus)
 - chiral counting shows that leading effect from $\mu \rightarrow e$ on single nucleon currents

WET

Haxton, McElvain, Menzo, Rule, JZ, 2312.nnnn

- only need to keep WET operators relevant for $\mu \rightarrow e$ conversion
 - work up to and including dimension 7

$$\mathcal{L}_{ ext{eff}}^{ ext{WET}} = \sum_{a,d} \hat{\mathcal{C}}_a^{(d)} \mathcal{Q}_a^{(d)},$$

$$\hat{\mathcal{C}}_a^{(d)} = rac{\mathcal{C}_a^{(d)}}{\Lambda^{d-4}}.$$

- 2 dim 5 operators
 - magnetic (CP-even) and electric (CP-odd) dipole op.

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{e}\sigma^{\alpha\beta}\mu) F_{\alpha\beta} , \qquad \mathcal{Q}_2^{(5)} = \frac{e}{8\pi^2} (\bar{e}\sigma^{\alpha\beta}i\gamma_5\mu) F_{\alpha\beta} ,$$

WET

Haxton, McElvain, Menzo, Rule, JZ, 2312.nnnn

• 10 dimension 6 ops

$$\begin{aligned} \mathcal{Q}_{1,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\mu)(\bar{q}\gamma^{\alpha}q) \,, & \mathcal{Q}_{2,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\gamma_{5}\mu)(\bar{q}\gamma^{\alpha}q) \,, \\ \mathcal{Q}_{3,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\mu)(\bar{q}\gamma^{\alpha}\gamma_{5}q) \,, & \mathcal{Q}_{4,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\gamma_{5}\mu)(\bar{q}\gamma^{\alpha}\gamma_{5}q) \,. \\ \mathcal{Q}_{5,q}^{(6)} &= (\bar{e}\mu)(\bar{q}q) \,, & \mathcal{Q}_{6,q}^{(6)} &= (\bar{e}i\gamma_{5}\mu)(\bar{q}q) \,, \\ \mathcal{Q}_{7,q}^{(6)} &= (\bar{e}\mu)(\bar{q}i\gamma_{5}q) \,, & \mathcal{Q}_{8,q}^{(6)} &= (\bar{e}i\gamma_{5}\mu)(\bar{q}i\gamma_{5}q) \,, \\ \mathcal{Q}_{9,q}^{(6)} &= (\bar{e}\sigma^{\alpha\beta}\mu)(\bar{q}\sigma_{\alpha\beta}q) \,, & \mathcal{Q}_{10,q}^{(6)} &= (\bar{e}i\sigma^{\alpha\beta}\gamma_{5}\mu)(\bar{q}\sigma_{\alpha\beta}q) \,. \end{aligned}$$

- note: we use operator basis with well defined parity
 - more convenient for
 - taking nonrel. limit for muons
 - writing down hadronic matrix elements of quark and gluon currents
- related to other WET bases used in the literature by linear transf.
- note: tensor currents appear already at dimension 6
 - J. Zupan MuonBridge...

9

WET

- 16 operators at dimension 7
 - 8 couple leptonic currents to gauge bosons

 8 couple leptonic currents to quark currents

- $\mathcal{Q}_1^{(7)} = \frac{\alpha_s}{12\pi} (\bar{e}\mu) G^{a\alpha\beta} G^a_{\alpha\beta} \,,$ $\mathcal{Q}_2^{(7)} = \frac{\alpha_s}{12\pi} (\bar{e}i\gamma_5\mu) G^{a\alpha\beta} G^a_{\alpha\beta} \,,$ $\mathcal{Q}_3^{(7)} = \frac{\alpha_s}{8\pi} (\bar{e}\mu) G^{a\alpha\beta} \widetilde{G}^a_{\alpha\beta} \,,$ $\mathcal{Q}_4^{(7)} = \frac{\alpha_s}{8\pi} (\bar{e}i\gamma_5\mu) G^{a\alpha\beta} \widetilde{G}^a_{\alpha\beta} \,,$ $\mathcal{Q}_5^{(7)} = \frac{\alpha}{12\pi} (\bar{e}\mu) F^{\alpha\beta} F_{\alpha\beta} \,,$ $\mathcal{Q}_6^{(7)} = \frac{\alpha}{12\pi} (\bar{e}i\gamma_5\mu) F^{\alpha\beta} F_{\alpha\beta} ,$ $\mathcal{Q}_7^{(7)} = \frac{\alpha}{_{\mathbf{R}\pi}} (\bar{e}\mu) \, F^{\alpha\beta} \tilde{F}_{\alpha\beta} \,,$ $\mathcal{Q}_8^{(7)} = \frac{\alpha}{_{\mathbf{R}\pi}} (\bar{e}i\gamma_5\mu) F^{\alpha\beta}\tilde{F}_{\alpha\beta} \,,$ $\mathcal{Q}_{9,q}^{(7)} = \left(\bar{e} \stackrel{\leftrightarrow}{i\partial}_{\alpha} \mu\right) \left(\bar{q}\gamma^{\alpha}q\right),$ $\mathcal{Q}_{10,q}^{(7)} = \left(\bar{e}i\gamma_5 \stackrel{\leftrightarrow}{i\partial}_{\alpha} \mu\right) \left(\bar{q}\gamma^{\alpha}q\right),$ $\mathcal{Q}_{11,q}^{(7)} = \left(\bar{e} \, \overrightarrow{i\partial}_{\alpha} \, \mu\right) \left(\bar{q} \gamma^{\alpha} \gamma_{5} q\right),$ $\mathcal{Q}_{12,q}^{(7)} = \left(\bar{e}i\gamma_5 \ \overrightarrow{i\partial}_{\alpha} \ \mu\right) \left(\bar{q}\gamma^{\alpha}\gamma_5 q\right),$ $\mathcal{Q}_{14,q}^{(7)} = \partial^{\alpha} (\bar{e} \gamma^{\beta} \gamma_5 \mu) \left(\bar{q} \sigma_{\alpha\beta} q \right),$ $\mathcal{Q}_{13,q}^{(7)} = \partial^{\alpha} (\bar{e}\gamma^{\beta}\mu) \left(\bar{q}\sigma_{\alpha\beta}q \right),$ $\mathcal{Q}_{15,q}^{(7)} = \partial^{\alpha} (\bar{e} \gamma^{\beta} \mu) \left(\bar{q} i \sigma_{\alpha\beta} \gamma_5 q \right),$ $\mathcal{Q}_{16,q}^{(7)} = \partial^{\alpha} (\bar{e}\gamma^{\beta}\gamma_{5}\mu) \left(\bar{q}i\sigma_{\alpha\beta}\gamma_{5}q \right),$
- note: all derivatives moved to leptonic currents by EOM
 - convenient basis for calculating hadronic matrix elements

Haxton, McElvain, Menzo, Rule, JZ, 2312.nnnn

J. Zupan MuonBridge...

Haxton, McElvain, Ramsey-Mussolf, Rule, 2208.07945 Haxton, McElvain, Rule, 2109.13503

NRET

• a hierarchy of small parameters

$$y \equiv \left(\frac{qb}{2}\right)^2 > |\vec{v}_N| > |\vec{v}_\mu| > |\vec{v}_T|$$

$$b \sim \text{nuclear} \quad \vec{v}_N = (\vec{k}_1 + \vec{k}_2)/2 \text{ bound muon velocity of outgoing target nucleon velocity nucleus}$$

- $y \sim 0.2 0.5 \Rightarrow$ nuclear scales are being probed
- Chiral EFT: NP interactions with single nucleon current dominate
- NRET: can expand in v_N and v_μ
 - $v_N > v_\mu \Rightarrow$ leading effect captured from NRET basis with ops. of $\mathcal{O}(v_N, v_\mu^0)$
 - this gives 16 operators (primed operators have structure that differs from NRET for DM)
 - $\mathcal{O}(v_{\mu})$ are also included in the predictions in the MuonBridge code: additional 10 operators

J. Zupan MuonBridge...

Haxton, McElvain, Ramsey-Mussolf, Rule, 2208.07945 Haxton, McElvain, Rule, 2109.13503

NRET

• a	$\mathcal{O}_1 = \mathbb{1}_L \ \mathbb{1}_N,$	$\mathcal{O}_2' = \mathbb{1}_L \; i \hat{q} \cdot ec{v}_N,$
	$\mathcal{O}_3 = \mathbb{1}_L \; i \hat{q} \cdot \left[ec{v}_N imes ec{\sigma}_N ight],$	$\mathcal{O}_4=ec{\sigma}_L\cdotec{\sigma}_N,$
	$\mathcal{O}_5 = ec{\sigma}_L \cdot \left(i \hat{q} imes ec{v}_N ight),$	$\mathcal{O}_6 = i \hat{q} \cdot ec{\sigma}_L \; i \hat{q} \cdot ec{\sigma}_N,$
	$\mathcal{O}_7 = \mathbb{1}_L \; ec{v}_N \cdot ec{\sigma}_N,$	$\mathcal{O}_8=ec{\sigma}_L\cdotec{v}_N,$
	$\mathcal{O}_9 = ec{\sigma}_L \cdot \left(i \hat{q} imes ec{\sigma}_N ight),$	$\mathcal{O}_{10} = \mathbb{1}_L \; i \hat{q} \cdot ec{\sigma}_N,$
• y	$\mathcal{O}_{11}=i\hat{q}\cdotec{\sigma}_L \; 1_N,$	$\mathcal{O}_{12} = ec{\sigma}_L \cdot \left[ec{v}_N imes ec{\sigma}_N ight],$
• C	$\mathcal{O}_{13}' = ec{\sigma}_L \cdot \left(i \hat{q} imes \left[ec{v}_N imes ec{\sigma}_N ight] ight),$	${\cal O}_{14}=i\hat{q}\cdotec{\sigma}_Lec{v}_N\cdotec{\sigma}_N,$
• N	$\mathcal{O}_{15} = i \hat{q} \cdot ec{\sigma}_L \; i \hat{q} \cdot \left[ec{v}_N imes ec{\sigma}_N ight],$	$\mathcal{O}_{16}' = i \hat{q} \cdot ec{\sigma}_L \; i \hat{q} \cdot ec{v}_N.$

- $v_N > v_\mu \Rightarrow$ leading effect captured from NRET basis with ops. of $\mathcal{O}(v_N, v_\mu^0)$
 - this gives 16 operators (primed operators have structure that differs from NRET for DM)
- $\mathcal{O}(v_{\mu})$ are also included in the predictions in the MuonBridge code: additional 10 operators

J. Zupan MuonBridge...

MATCHING ONTO NRET

• NRET effective Lagrangian

$$\mathcal{L}_{ ext{eff}}^{ ext{NRET}} = \sum_{N=n,p} \sum_{i=1}^{16} c_i^N \mathcal{O}_i^N + \cdots,$$

• low energy coefficients are functions of \vec{q}_{eff}^2 in general

• for $\mu \rightarrow e$ this is a constant

- their values from nonperturbative matching of WET to NRET
 - follow from nucleon matrix elements
 - for instance

$$c_{1}^{N} = \sum_{q} \frac{1}{m_{q}} \hat{\mathcal{C}}_{5,q}^{(6)} F_{S}^{q/N} + \hat{\mathcal{C}}_{1}^{(7)} F_{G}^{N} + \hat{\mathcal{C}}_{5}^{(7)} F_{\gamma}^{N},$$

+
$$\sum_{q} \hat{\mathcal{C}}_{1,q}^{(6)} F_{1}^{q/N} + m_{+} \sum_{q} \hat{\mathcal{C}}_{9,q}^{(7)} F_{1}^{q/N} - \sum_{q} \frac{q^{2}}{2m_{N}m_{q}} \hat{\mathcal{C}}_{13,q}^{(7)} \left(F_{T,1}^{q/N} - 4F_{T,2}^{q/N}\right)$$

olis, Dec 7, 2023

$$\langle N' | \bar{q} \gamma^{\mu} q | N \rangle = \bar{u}'_{N} \left[F_{1}^{q/N} (q^{2}) \gamma^{\mu} - \frac{i}{2m_{N}} F_{2}^{q/N} (q^{2}) \sigma^{\mu\nu} q_{\nu} \right] u_{N},$$

$$\langle N' | \bar{q} \gamma^{\mu} \gamma_{5} q | N \rangle = \bar{u}'_{N} \left[F_{A}^{q/N} (q^{2}) \gamma^{\mu} \gamma_{5} - \frac{1}{2m_{N}} F_{P'}^{q/N} (q^{2}) \gamma_{5} q^{\mu} \right] u_{N},$$

$$\langle N' | m_{q} \bar{q} q | N \rangle = F_{S}^{q/N} (q^{2}) \bar{u}'_{N} u_{N},$$

$$\langle N' | m_{q} \bar{q} i \gamma_{5} q | N \rangle = F_{P}^{q/N} (q^{2}) \bar{u}'_{N} i \gamma_{5} u_{N},$$

$$\langle N' | m_{q} \bar{q} i \gamma_{5} q | N \rangle = F_{G}^{N} (q^{2}) \bar{u}'_{N} i \gamma_{5} u_{N},$$

$$\langle N' | m_{q} \bar{q} i \gamma_{5} q | N \rangle = F_{G}^{N} (q^{2}) \bar{u}'_{N} i \gamma_{5} u_{N},$$

$$\langle N' | \frac{\alpha_{s}}{8\pi} G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} | N \rangle = F_{G}^{N} (q^{2}) \bar{u}'_{N} i \gamma_{5} u_{N},$$

$$\langle N' | m_{q} \bar{q} \sigma^{\mu\nu} q | N \rangle = \bar{u}'_{N} \left[F_{T,0}^{q/N} (q^{2}) \sigma^{\mu\nu} - \frac{i}{2m_{N}} \gamma^{[\mu} q^{\nu]} F_{T,1}^{q/N} (q^{2}) - \frac{i}{m_{N}^{2}} q^{[\mu} k_{12}^{\nu]} F_{T,2}^{q/N} (q^{2}) \right] u_{N},$$

$$\langle N' | \frac{\alpha}{2\pi} F^{\mu\nu} F_{\mu\nu} | N \rangle = F_{\gamma}^{N} (q^{2}) \bar{u}'_{N} u_{N},$$

$$\langle N' | \frac{\alpha}{8\pi} F^{\mu\nu} \tilde{F}_{\mu\nu} | N \rangle = F_{\gamma}^{N} (q^{2}) \bar{u}'_{N} i \gamma_{5} u_{N}.$$

$$\text{follow from nucleon matrix elements}$$

$$\text{for instance}$$

$$c_{1}^{N} = \sum_{q} \frac{1}{m_{q}} \hat{c}_{5,q}^{(6)} F_{S}^{q/N} + \hat{c}_{1}^{(7)} F_{N}^{N} + \hat{c}_{S}^{(7)} F_{\gamma}^{N},$$

$$+ \sum_{q} \hat{c}_{1,q}^{(6)} F_{1}^{q/N} + m_{+} \sum_{q} \hat{c}_{3,q}^{(7)} F_{1}^{q/N} - \sum_{q} \frac{q^{2}}{2m_{N} m_{q}} \hat{c}_{1,q}^{(7)} \left(F_{T,1}^{q/N} - 4F_{T,2}^{q/N} \right)$$

$$\text{lis, Dec 7.7}$$

J. 2

olis, Dec 7, 2023

CONVERSION RATE

- matrix elements squared of NRET operators leads to nuclear response functions W_i
- the $\mu \rightarrow e$ conversion rate thus

$$\begin{split} \Gamma(\mu \to e) &= \frac{G_F^2}{\pi} \; \frac{q_{\rm eff}^2}{1 + \frac{q}{M_T}} \; |\phi_{1s}^{Z_{\rm eff}}(\vec{0})|^2 \; \sum_{\tau=0,1} \sum_{\tau'=0,1} \left\{ \; \left[\tilde{R}_{MM}^{\tau\tau'} \; W_{MM}^{\tau\tau'}(q_{\rm eff}) + \tilde{R}_{\Sigma'\Sigma''}^{\tau\tau'} \; W_{\Sigma'\Sigma''}^{\tau\tau'}(q_{\rm eff}) + \tilde{R}_{\Sigma'\Sigma'}^{\tau\tau'} \; W_{\Sigma'\Sigma'}^{\tau\tau'}(q_{\rm eff}) \right] \\ &+ \frac{q_{\rm eff}}{m_N^2} \; \left[\tilde{R}_{\Phi''\Phi''}^{\tau\tau'} \; W_{\Phi''\Phi''}^{\tau\tau'}(q_{\rm eff}) + \tilde{R}_{\Phi'\tilde{\Phi}'}^{\tau\tau'} \; W_{\tilde{\Phi}\tilde{\Phi}\tilde{\Phi}}^{\tau\tau'}(q_{\rm eff}) + \tilde{R}_{\Delta\Delta}^{\tau\tau'} \; W_{\Delta\Delta}^{\tau\tau'}(q_{\rm eff}) \right] \\ &- \frac{2q_{\rm eff}}{m_N} \; \left[\tilde{R}_{\Phi''M}^{\tau\tau'} \; W_{\Phi''M}^{\tau\tau'}(q_{\rm eff}) + \tilde{R}_{\Delta\Sigma'}^{\tau\tau'} \; W_{\Delta\Sigma'}^{\tau\tau'}(q_{\rm eff}) \right] \end{split}$$

- particle physics is in products of Wilson coefficients *R_i*
 - for instance the terms not vanishing in $v_N \rightarrow 0$ limit

$$\begin{split} \tilde{R}_{MM}^{\tau\tau'} &= \tilde{c}_1^{\tau} \tilde{c}_1^{\tau'*} + \tilde{c}_{11}^{\tau} \tilde{c}_{11}^{\tau'*}, \\ \tilde{R}_{\Sigma'\Sigma'}^{\tau\tau'} &= \tilde{c}_4^{\tau} \tilde{c}_4^{\tau'*} + \tilde{c}_9^{\tau} \tilde{c}_9^{\tau'*} \\ \tilde{R}_{\Sigma'\Sigma'}^{\tau\tau'} &= (\tilde{c}_4^{\tau} - \tilde{c}_6^{\tau}) (\tilde{c}_4^{\tau'*} - \tilde{c}_6^{\tau'*}) + \tilde{c}_{10}^{\tau} \tilde{c}_{10}^{\tau'*} \end{split}$$

J. Zupan MuonBridge...

$$c_i \equiv \tilde{c}_i / v^2 = \sqrt{2} G_F \, \tilde{c}_i,$$

Muons@Minneapolis, Dec 7, 2023

NUCLEAR RESPONSE FUNCTIONS

- $W_M(q)$: from vector operator
 - in $q \rightarrow 0$ limit counts nucleons \Rightarrow spin-indep. (coherent) scattering
- $W_{\Sigma''}$ and $W_{\Sigma'}$: longit. and transverse axial ops.
 - related to conventional spin form factors

$$W_{\Sigma'}^{\tau\tau'} + W_{\Sigma''}^{\tau\tau'} = S_{\tau\tau'}, \quad \tau, \tau' = 0, 1.$$

$$\begin{split} S_{00,11} &= \frac{1}{4\pi} \sum_{\text{spins}} |\langle \vec{S}_p \pm \vec{S}_n \rangle|^2, \\ S_{01} &= \frac{1}{2\pi} \sum_{\text{spins}} |\langle \vec{S}_p \rangle|^2 - |\langle \vec{S}_n \rangle|^2, \end{split}$$

- measure the nucleon spin content of the nucleus
- W_{Δ} , $W_{\tilde{\Phi}'}$, $W_{\tilde{\Phi}''}$: come from couplings to velocities of nucleons
 - reflect the composite structure of the nucleus
 - coherence over half-filled shells for $W_{\tilde{\Phi}''}$
- rough scaling for Al (isocalars):

$$W_{M} \sim \mathcal{O}(A^{2}) \gg \left\{ W_{\Sigma'}, W_{\Sigma''}, \frac{q_{\text{eff}}^{2}}{m_{N}^{2}} W_{\tilde{\Phi}''} \right\} \gg \left\{ \frac{q_{\text{eff}}^{2}}{m_{N}^{2}} W_{\Delta}, \frac{q_{\text{eff}}^{2}}{m_{N}^{2}} W_{\tilde{\Phi}'} \right\}$$

- six more response functions + 2 interf. terms at $\mathcal{O}(v_{\mu})$
 - J. Zupan MuonBridge...

COMMENTS

- since q_{eff} changes by only ~5% from C to W
 - $c_i^N(q_{\text{eff}})$ are basically constants
- ⇒ from µ → e can measure only a few linear combinations of Wilson coeffs
 - 3 combinations at $\mathcal{O}(v_N^0, v_\mu^0)$
 - vector/scalar, axial, psedoscalar currents
 - + 5 combinations at $\mathcal{O}(v_N, v_{\mu}^0)$
 - this is for isoscalar-isocalar W's, since also isovectorisoscalar, isovector-isovector, 3x those nos. in total
- to understand UV physics important to measure both $\mu \rightarrow e$ on different targets and $\mu \rightarrow e\gamma (\mu \rightarrow 3e)$

J. Zupan MuonBridge...

MUONBRIDGE

- the code/repository **MuonBridge** consists of three modules
 - MuonConverter: matches WET to NRET
 - can interface with RG running codes
 - Mu2e_NRET: calculates the $\mu \rightarrow e$ rate

$$B(\mu^{-} \to e^{-}) = \frac{\Gamma\left[\mu^{-} + (A, Z) \to e^{-} + (A, Z)\right]}{\Gamma\left[\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)\right]},$$

- particle physics input from MuonConverter, i.e., WET
 Wilson coeffs. C_i
- Elastic: a database of shell model density matrices for calculating nuclear form factors
- comes in both **Python** and **Mathematica** versions

NEW PHYSICS EXAMPLES

- two examples
 - leptoquarks
 - light ALP

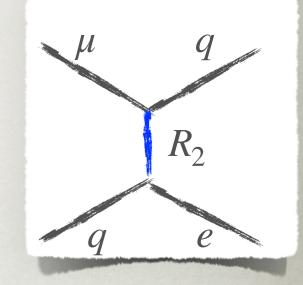
J. Zupan MuonBridge ...

Muons@Minneapolis, Dec 7, 2023

LEPTOQUARK EXAMPLE

scalar leptoquark R₂ in the (3, 2, 7/6) of the SM gauge group

$$\mathcal{L} \supset y_{2\,ij}^{RL} \,\bar{u}_R^i R_2 L_L^j + y_{2\,ij}^{LR} \,\bar{e}_R^i R_2^* Q_L^j + \text{h.c.},$$



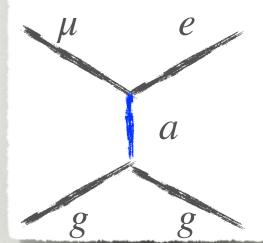
- integrating out R_2 at $\mu = m_{R_2}$ all 10 of the dim 6 operators in WET basis are generated
- in particular operators with quark tensor currents are generated
 - these have coherently enhanced contribs. at subleading powers in v_N , $v_\mu \Rightarrow$ required to be kept in **MuonBridge**

$$\begin{aligned} \mathcal{Q}_{1,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\mu)(\bar{q}\gamma^{\alpha}q), \\ \mathcal{Q}_{3,q}^{(6)} &= (\bar{e}\gamma_{\alpha}\mu)(\bar{q}\gamma^{\alpha}\gamma_{5}q), \\ \mathcal{Q}_{5,q}^{(6)} &= (\bar{e}\mu)(\bar{q}q), \\ \mathcal{Q}_{5,q}^{(6)} &= (\bar{e}\mu)(\bar{q}i\gamma_{5}q), \\ \mathcal{Q}_{7,q}^{(6)} &= (\bar{e}\mu)(\bar{q}i\gamma_{5}q), \\ \mathcal{Q}_{9,q}^{(6)} &= (\bar{e}\sigma^{\alpha\beta}\mu)(\bar{q}\sigma_{\alpha\beta}q), \end{aligned} \\ \begin{aligned} \mathcal{Q}_{9,q}^{(6)} &= (\bar{e}\sigma^{\alpha\beta}\mu)(\bar{q}\sigma_{\alpha\beta}q), \\ \mathcal{L} \supset y_{2\,ij}^{RL} \bar{u}_{R}^{i}R_{2}L_{L}^{j} + y_{2\,ij}^{LR} \bar{e}_{R}^{i}R_{2}^{2}Q_{L}^{j} + \text{h.c.}, \end{aligned}$$

- integrating out R_2 at $\mu = m_{R_2}$ all 10 of the dim 6 operators in WET basis are generated
- in particular operators with quark tensor currents are generated
 - these have coherently enhanced contribs. at subleading powers in v_N , $v_\mu \Rightarrow$ required to be kept in **MuonBridge**

LIGHT ALP

- the same formalism trivially extends to light mediators
- example light ALP coupling to *µe* and gluons
- strictly speaking WET no longer an appropriate EFT
 - but trivial fix, allow Wilson coeffs to be q^2 dependent, $C_i \propto 1/(m_a^2 q^2)$
 - since *a* only weakly couples to gluons: corrections to QCD can be neglected, i.e., just an external probe
 - in $\mu \rightarrow e$ the *q* is fixed, so C_i are even constants



CONCLUSIONS

- EFT approach well suited for predicting the $\mu \rightarrow e$ conversion rates
- presented results that include up to dim-7 ops in WET, subleading effects in NRET
- results will be available in the form of a public code MuonBridge

BACKUP SLIDES

TABLE I. An incomplete survey of elastic $\mu \to e$ conversion studies including the nuclear targets considered, the nuclear multipole operators evaluated, and the form of the lepton wave functions employed. $\mathcal{O}_{J;\tau}$ means that both isospin structures and all allowed J were included. For the Dirac electron, all of the references surveyed restrict attention to the lowest partial waves $\kappa = \pm 1$. Besides the Dirac solution, the remaining forms of the muon wave function are all constant approximations: $\langle |\psi_{\mu}|^2 \rangle_{\rho}$ is obtained by averaging the probability of the Dirac solution over the nuclear density, $|\phi_{1s}^{Z}(\vec{0})|^2$ is the probability of the point-like Schrodinger solution evaluated at the origin, $|G(R_N)|^2$ is the upper component of the muon's Dirac wave function evaluated at the nuclear radius. Superscript \dagger indicates that the reference considers the inelastic process as well, although the information in the table reflects only the treatment of the elastic process.

Author(s)	Year [Ref]	Target	Operators	ψ_e	ψ_{μ}
Weinberg and Feinberg [†]	1959 [23]	multiple	$M_{0;p}$	Plane wave	$\langle \psi_{\mu} ^2 \rangle_{ ho}$
Marciano and Sanda	1977 [24]	multiple	$M_{0; au}$	Plane wave	$\langle \psi_{\mu} ^2 \rangle_{ ho}^r$
Shanker	1979 [25]	multiple	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Kosmas and Vergados ^{\dagger}	1990 [26]	multiple	$M_{0; au}$	Plane wave	$\langle \psi_{\mu} ^2 angle_{ ho}$
Chiang et al. ^{\dagger}	$1993 \ [27]$	multiple	$M_{0; au}$	Plane wave	$\langle \psi_{\mu} ^2 angle_{ ho}^{'}$
Kosmas et al. [†]	1994 [28]	⁴⁸ Ti	$M_{0; au}$	Plane wave	$\langle \psi_{\mu} ^2 \rangle_{ ho}$
Czarnecki, Marciano, and Melnikov	1998 [29]	²⁷ Al, ⁴⁸ Ti, ²⁰⁸ Pb	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Siiskonen, Suhonen, and Kosmas^\dagger	2000 [30]	²⁷ Al, ⁴⁸ Ti	$M_{J;\tau} \Sigma'_{J;\tau} \Sigma''_{J;\tau}$	Plane wave	$\langle \psi_{\mu} ^2 angle_{ ho}$
Kosmas^\dagger	2001 [31]	⁴⁸ Ti, ²⁰⁸ Pb	$M_{J; au} \Sigma'_{J; au} \Sigma''_{J; au}$	Plane wave	$\langle \psi_{\mu} ^2 angle_{ ho}^{r}$
Kitano, Koike, and Okada	2002 [32]	multiple	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Kosmas	2003 [33]	multiple	$M_{0; au}$	Plane wave	Dirac
Cirigliano et al.	$2009 \ [6]$	multiple	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Crivellin et al.	2017 [34]	²⁷ Al, ¹⁹⁷ Au	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Bartolotta and Ramsey-Musolf	2018 [35]	²⁷ Al	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Cirigliano, Davidson, and Kuno	2018 [36]	27 Al	$M_{0;\tau} \Sigma'_{J;\tau} \Sigma''_{J;\tau}$	Plane wave	$ \phi^{Z}_{1s}(ec{0}) ^{2}$
Davidson, Kuno, and Saporta	2018 [37]	²⁷ Al, Ti	$M_{0;\tau} \Sigma'_{J;\tau} \Sigma''_{J;\tau}$	Plane wave	$ \phi^{Z}_{1s}(ec{0}) ^{2}$
Civitarese and Tarutina ^{\dagger}	2019 [38]	208 Pb	$M_{0; au}$	Plane wave	$ G(R_N) ^2$
Rule, Haxton, and McElvain	2021 [16]	²⁷ Al, Ti	$M_{J; au} \Sigma'_{J; au} \Sigma''_{J; au}$	Full Dirac $(q_{ m eff})$	$ \phi^{Z_{ ext{eff}}}_{1s}(ec{0}) ^2$
			$\Delta_{J;\tau} \; \tilde{\Phi}'_{J;\tau} \; \Phi''_{J;\tau}$		
Heeck, Szafron, and Uesaka	2022 [39]	multiple	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Cirigliano et al.	2022 [40]	²⁷ Al, ⁴⁸ Ti, ¹⁹⁷ Au, ²⁰⁸ Pb	$M_{0; au}$	Dirac, $ \kappa = 1$	Dirac
Hoferichter, Menéndez, and Noël	2022 [41]	²⁷ Al,Ti	$M_{J;\tau} \Sigma'_{J;\tau} \Sigma''_{J;\tau}$	Plane wave	$\left< \psi_{\mu} ^{2} ight>_{ ho}$
			$\Phi_{J; au}^{\prime\prime}$		-

Haxton, McElvain, Ramsey-Mussolf, Rule, 2208.07945

Muons@Minneapolis, Dec 7, 2023

J. Zupan MuonBridge...

Nucleus	$c~({ m fm})$	β (fm)	$\sqrt{\langle r^2 angle}$ (fm)	E_{μ}^{bind} (MeV)	$\int_0^\infty F_{1s} ^2 dr$	Z	$Z_{ m eff}$	R	$q~({ m MeV})$	$q_{ m eff}~({ m MeV})$
¹² C	2.215	0.491	2.505	0.1000	0.00047	6	5.7030	0.8587	105.07	108.40
¹⁶ 0	2.534	0.514	2.739	0.1775	0.00083	8	7.4210	0.7982	105.11	109.16
19 F	2.580	0.567	2.904	0.2242	0.00104	9	8.2298	0.7646	105.12	109.44
23 Na	2.760	0.543	2.940	0.3337	0.00154	11	9.8547	0.7190	105.07	110.25
²⁷ Al	3.070	0.519	3.062	0.4630	0.00211	13	11.3086	0.6583	104.98	110.81
²⁸ Si	3.140	0.537	3.146	0.5346	0.00241	14	12.0009	0.6299	104.91	111.03
^{32}S	3.161	0.578	3.239	0.6924	0.00308	16	13.1839	0.5595	104.78	111.56
40 Ca	3.621	0.563	3.499	1.0585	0.00453	20	15.6916	0.4830	104.45	112.28
48 Ti	3.843	0.588	3.693	1.2615	0.00527	22	16.6562	0.4340	104.28	112.43
56 Fe	4.111	0.558	3.800	1.7182	0.00690	26	18.6028	0.3663	103.84	113.16
⁶³ Cu	4.218	0.596	3.947	2.0884	0.00811	29	19.8563	0.3210	103.48	113.50
^{184}W	6.510	0.535	5.421	9.0851	0.01169	74	32.2914	0.0831	96.54	114.95

TABLE XI. Input parameters and output quantities for the muon and electron Dirac solutions discussed in the text.

Haxton, McElvain, Ramsey-Mussolf, Rule, 2208.07945