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/ ABSTRACT MANY ELECTRONS

We report on experimental investigations of a single electron, circulating in the Fermilab IOTA
storage ring, focusing on two-photon undulator emissions. We employ a Mach-Zehnder
interferometer (MZI) for the undulator radiation to determine the photon coherence length as
well as to measure its statistical properties. In this experiment, the pulse of radiation in one arm
of the interferometer is delayed by a certain optical delay. The optical delay can be adjusted
with a step as small as 10 nm. We show that when the optical delay is varied, we observe
oscillations of photon count rates in the two outputs of the interferometer. This interference
pattern contains information about the temporal shape of the undulator radiation pulse, also
known as the radiation coherence length. It may also contain information on non-classical two-
photon statistics. In this paper, we present and discuss our measurements of this coherence
length and statistical properties in both multi-electron and single-electron regimes..

Uncollimated undulator light at the digital camera for different MZI angles. False colors.

INTRODUCTION

SINGLE ELECTRON

SPAD signals are recording continuously. The coincidence rate is within 20 ns window

Previous experiments [1] have demonstrated that a single electron in a storage ring behaves
like a classical object, although its synchrotron radiation is quantized. Recently, an experiment,

which employed an MZI with many electrons in a ring, has obtained an autocorrelation trace for a : .. f .
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our experiment we also employed MZ interferometry of the undulator radiation in IOTA. In these
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C — M4 LS2 Figure 2. Simplified experimental setup to observe the Hong—Ou—Mandel dip. (a) We present an experimental setup similar to that Figure 1. Two types of experimental schemes for realizing the two-photon interference of weak coherent
presented by Hong, Ou and Mandel. An ultraviolet (UV) laser pumps a nonlinear crystal, e.g. KDP, BBO or ppKTP. Pairs of photons are pulses. The two photons contributing to the interference originate from (a) two independent sources or (b) a
generated with anti-correlated linear momentum and separated using a knife-edge (KE) mirror. The photons are brought back together at a common source. BS, beam splitter; M, mirror; PZT, piezoelectric transducer; D, single-photon detector.
50:50 BS, where a variable path delay is scanned to control the arrival time of one of the photons. The photons exiting the output ports of the
BS are detected using single-photon avalanche diode (SPAD) detectors and coincidence counts are recorded. (b) Example of experimental 12
results showing the two-photon interference dip, dropping to zero when the two photons enter the BS simultaneously. Solid line indicated :
I SPAD? expected theoretical coincidence counts, and dots indicate experimental measurements. The peak in counts on either side of the dip is caused ol
LD by the use of a rectangular bandpass filter in experiment, as compared to a Gaussian filter in theory. Figure legends: UV, ultraviolet beam; .
BBO, Beta barium borate nonlinear crystal; KE, knife edge; BS, 50:50 beam splitter; SPAD, single photon avalanche diode. _
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Digital Camera (LED test example)

Active area (diameter) 180 pm So far, we have not observed any deviation from the classical behavior for undulator photon

Photon detection 65% pairs and a single electron in a storage ring. Future work should allow for setting a limit on
efficiency at 850 nm quantum/classical nature of undulator radiation.
Dark count ~100 cps
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wavelength. Maximum visibility ~100%.
LD operates far below the lasing
threshold.
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