WLS for FD3

CM. Cattadori on behalf of the WG FD3 Mini- Workshop Stony Brook Univesrity 26/06/2023

Module APEX (Aluminium Profile Embedding XA)

Simplified XA concept

The FD1&FD2 X-Arapuca concept

The XA light collection in LAr

- For θ > θ_c (=56°) photons are trapped and guided to SiPMs. (Lightguide Collection-LGC)
- For $\theta < \theta_c$ photons leave the lightguide and imping onto the DF (DF Collection)

FD3-XA config. & WLS Requirements

One possible simplified XA configuration is based on the LGC mechanism is shown: it allows to save SiPMs thanks to the reduced OP inside the WLS lightguide

The WLS requirements & design are strictly related to the changes w.r.t. the FD1/FD2 XA design, and to the LAr target

To fit into the FC rings→ WLS: 8 x 6 x 100 cm²

PEN/PS

Number of WLS bar units: 4300

SIPM

FD3 WLS design & manufacturing

WLS

- Design:
 - choose bulk matrix (scintillator/Cerenkov only)
 - choose first shifter (from VUV to NUV/Vis))
 - choose the secondary cromophore (if needed) with proper Stoke shift and concentration to trade off PhotoLuminescense Yield and Abs. Length.
 - if bulk is scintillator, secondary chrom. may not be needed or in case will be properly selected
- Low Radioactivity casting process
- Mass production capabilities of Large Area WLS with optical grade surfaces
- Laser cut w./w.o. edge shapes to allocate SiPMs

Features of FD1 & FD2 WLS

- Cryoresilience
- Chromophore embedded in PMMA (no scintillator, only
- High tolerances on the tiles both on

 - $O(0.3 \, \text{mm}) z$
- Guiding surfaces: as casted
- Edges: polished
- Absorbption: 300-390 nm (tailored for pTP emission)
- Emission: 420-500 nm to match the SiPM Q.E.

FD1 BL: Optical Path O(20 cm) + trapping paths

FD2: Optical Path O (1 m)

WLS manufacturing capabilities

By the R&D dptm. of our industrial partner, an in house a casting facility is available

The syrup preparation (MMA + initiator + chromophore) is the preliminary step to the casting of plates.

The stirrer enclosed in a cabinet can operate in protected atmosphere.

It allows to reach low Rn contaminations in the WLS

The reactor to prepare the MMA syrup

^{*} Glass to Power Co.: Former start up of Uni MiB, now quoted at Eurostock: https://www.glasstopower.com/

WLS manufacturing capabilities

The joint R&D work triggered our industrial partner* to develop in house a casting reactor with casting capability of 5 large plates at time.

This reactor can be easily duplicated.

The syrup preparation (MMA + initiator + chromophore) is the preliminary step of the plates casting

A second industrial partner is available for mass production and bars lengths >> 60 cm

* Glass to Power Co.: Former start up of Uni MiB, now quoted at Eurostock: https://www.glasstopower.com/

The casting reactor: 5 plates at once

WLS: Production of 90 FD1 and 20 FD2

90 x WLS slabs for pDUNE
 FD1-PDS: 480 x 93 mm² x 4mm thick

Procedure to Laser cut (external industrial partner) and edge polishing procedures to cut out the casted plates in tiles is defined and validated.

- 20 x WLS slabs for FD2 M0: 607 x 607 mm² x 4mm thick casted in one week
- 6 x WLS slabs for M1: +1 mm thick
 & modified chromophore
 concentration (july/sept 2023).

FD2: Large Area WLS

One 607 x 607 x 4 mm³ slab is being assembled in one DUNE FD2 XA cell, together with SiPMs populated on flex circuits substrate.

Module-0 XA configurations

	WLS dimples	DF size (mm²)	DF	SiPM	PoF	SoF	shared elec. box
M1		100x200	ZAOT	HPK		, ,	х
M2		100x200	ZAOT	HPK			Х
M3	X	100x200	ZAOT	HPK			Х
M4	х	100x200	ZAOT	HPK			Х
M5	х	150x150	PE	FBK		X	
М6	х	150x150	PE	HPK			
M7	х	150x150	PE	HPK			8
M8	х	150x150	PE	FBK	10		6
C1		100x200	ZAOT	HPK	X	X	
C2		100x200	ZAOT	HPK	X	X	
C3		150x150	PE	FBK	X	X	2
C4	х	150x150	PE	HPK	X	X	8
C5	X	150x150	ZAOT	HPK	X	X	5
C6	х	150x150	ZAOT	HPK	X	X	
C7	х	150x150	ZAOT	FBK	X	X	,
C8	х	150x150	ZAOT	HPK	X	X	

- 11 WLS are Dimpled (SIPMS inside)
 - 2 sides square
 - 2 sides cylindrical
- 5 WLS are flat edges (SIPMS flushed with the WLS edges)
- Dichroics Filters
 - 10 ZAOT (3 rect. + 7 squared)
 - 6 are PE (all squared)

FD2-M0: SiPM to WLS coupling

BL design: WLS with flat edges

Also tested SiPMs fitting in dimple-cuts (flat/cylindrical) machined at the edges of the WLS

In LAr SiPMs are kept is in close contact to WLS thanks to flex circuits & spring loaded mechanism, to compensate the WLS shrinking (~1%. i.e. 6 mm)

26/04/23 -- AIDAINNOVA

L.Meazza

WLS: Attenuation length (latt)

The XA light collection in LAr

- For $\theta > \theta_c$ (=56°) photons are trapped and guided to SiPMs. (Lightguide Collection)
- For $\theta < \theta_c$ photons leave the lightguide and imping onto the DF (DF Collection)
- Due to multiple reflections the optical path inside large size WLS (as for FD2 of DUNE) may reach a couple of meters.

The WLS attenuation length l_{att} is the leading parameter to maximize the Lightguide collection at the edges of a large area WLS-lightguide.

FD1&FD2 WLS: Attenuation length (l_{att})

For the reference concentration (80 mg/Kg)

 The spectrophotometric T(λ) values at on a 4 mm sample are corrected (shifted) by the laser measurements

• The att.length (I_{att}) is derived

• The l_{att} for the other concentrations is

scaled

ε = molar extintion coeff.

c = concentration
d = optical path

FD1 WLS: SimulatedAttenuation length (l_{att})

The I_{att} of the DUNE - FD1:

- is 37 cm at 430 nm (maximum of WLS PL spectrum)
- The dye concentration has been tailored on the FD1 WLS shape.
- an optical simulation is employed to evaluate the impact of different variables on the light collection efficiency:
 - chromophore concentration
 - lightguide shape and size

BBT concentration scan

see L. Meazza Talk at PDS parallel Thursday 25th May

WLS optimization for Module-1 and FD2

The *cromophore concentration* of the DUNE - FD2:

- must be tailored for the FD2 WLS size → optical path.
- Optimization (driven by sims and measurements)
- For the WLS plate thickness (4 mm) the cromophore concentration must be tuned by the trade off the I_{att} and the pTP ph. trapping efficiency
- Second option is to reduce the chromophore conc while increasing the WLS thickness to up 5-6 mm: mechanical constraints?

WLS features & Performances:PDE & DCR

- Superior Cryoresilience: No cracks or failures in cooling/warming cycle at rate of 3-4 mm/sec of the 80 x FD1 pDUNE & 16 x FD2 Module-0 plates
- **Stress tests**: One prototype plate underwent 15-20 thermal cycles: no failures.
- Superior light guiding surfaces as casted

 Superior LY and DCR of XA cells equipped with our PMMA based WLS

AIDAINNOVA

Aging assessment of WLS slabs

- ~15 thermal cycles in between oct-dec21 and jan-23.
- Tested different configurations of a 480 x 93 x 4 mm³ plate

XA-PDE measurement method: old results

400

No correction

for LAr purity

+2% to +5%

applied.

Expected:

Method: z-scanning of the whole cell (~2 Sr) with an 241 Am exposed α source

(JINST 16 (2021)09027)

300 E 727.3 ± 1.0 250 200 150 100 Photoelectrons $\frac{4\pi \cdot \alpha \text{ peak(ADC)}}{\text{s.ph.e.(ADC)} \cdot f_{int} \cdot \text{LY}_{\text{LAr}} \cdot \text{En}_{\alpha} \cdot \text{q}_{\alpha} \cdot \Omega}$

Charge Distribution

 82.67 ± 3.03

 540.9 ± 0.7

27.01 ± 0.48

Pos 1

Pos 4

	SiPM PDE	XA PDE MiB Xtalk corr.	XA PDE CIEMAT Xtalk corr.
HPK & G2P	50%	2.2 (0.15)	2.51 (0.21)
FBK & G2P	50%	1.9 (0.14)	
FBK &	50%	1.7 (0.14)	1.56 (0.12)
Eljen			20
		MILANU BICOCCA	- 20

Enhancing the FD1-XA Supercell: PDE measurement list

day [dd/mm/yyyy]	light guide	frame	filters
18-19 / 01 / 2023	G2P FB164	improved light sealing	ОРТО
23-26 / 01 / 2023	G2P FB164 + vikuiti on long edge	improved light sealing	ОРТО
01-03 / 03 / 2023	G2P protoDUNE run2 batch	improved light sealing	3 OPTO + 3 ZAOT
07-08 / 03 / 2023	G2P protoDUNE run2 batch	improved light sealing	ОРТО
09-11 / 05 / 2023	G2P protoDUNE run2 batch	improved light sealing	ZAOT
16-17 / 05 / 2023	G2P protoDUNE run2 batch, 40° cut	improved light sealing	ZAOT
18-19 / 05 / 2023	G2P protoDUNE run2 batch	baseline	ZAOT
		1	₹ DEGLI STUDI

1. Improve light sealing Light sealing

- FD1-XA Supercell with Vikuiti-covered G10 spacer blocks between <u>all</u> the SiPMs; Vikuiti also covers the screw holes
 - placing Vikuiti closer to the light guide provides better light sealing
 - could be the cause of the better
 PDE of the SBND version
- Tested an "extreme" config.: Vikuiti on three sides (2 x short + 1 x long) edges of the WLS bar.
 - half the SiPMs are partially "blinded": to check effect of extreme sealing
 - \circ increase dependence on the WLS-LG I_{att}

3. Observation IMPORTANT for FD3: SiPM readout only on one Long Edge, Vikuiti on opposite long edge

We lined with Vikuiti one of the two LG long edges

- ½ of the SiPM surface blinded (66% active)
- lower PDE, as expected, but still 87% of previous meas.
 - the OP across the WLS width is O(10 cm)

measur e	baseli ne	19/01	23-26/0
avg PDE	2.51%	2.64%	2.29%
% wrt bl	-	+5%	-8%
% wrt 19/01	-	-	-13%
, ,			

2. Break ineffective Optical Path +Optical sealing+ ZAOT DF

G2P p-DUNE LG with 40° cut

➤ PDE: + 37%

HPK G2P ZAOT only - increased light sealing + new light guide

measure	baseli ne	10/05	16/05
avg PDE	2.51%	3.59%	4.93%
% wrt bl	-	+43%	+96%
% wrt 09/05	1		+37%

Simulation - light guide configurations

A different LG geometry should improve the PDE

- cutting the LG with an angle (about 40°)
 - breaks OP bouncing at the shorter edge
 - reflects light to the SiPMs
 - decreases the distance light has to travel to reach a SiPM
 - o mechanical constraints?
- simulated configurations:
 - 2 piece WLS, one 40° cut at the center
 - 3 piece WLS, two cuts (+-40°) (problem with existing light guide mechanical supports)

SiPM side

Simulation - light guide configurations

Supercell Scan - 0.5mm SiPM-WLS dist

config	averag e PDE*	% wrt baselin e
baseline	1.25	-
VB + VonLE	1.53	+22%
Vikuiti Blocks	1.79	+43%
VB + 2 piece WLS	2.04	+63%
VB + 2 piece offs	2.04	+63%
VB + 3 piece WLS	2.04	+63%

Alpha Spectra resolution, p.e. calibrated

- baseline
- p-DUNE WLS, NO G10 blocks,
 ZAOT
- p-DUNE WLS, G10 blocks, ZAOT
- WLS with cut, G10 blocks, ZAOT

All taken in the middle of the 3rd dichroic filter

```
mu = 692.704 sigma = 31.4929
mu = 749.976 sigma = 30.3693
mu = 962.185 sigma = 38.2959
mu = 1272.26 sigma = 38.0256
```


p.e.

Am-241 Alpha Spectra resolution: achieved results

Source is

- 5.4 MeV
- 5.5 cm distance
- The 2 pieces
 WLS Ig
 enhances the
 PDE → energy
 resolution

Conclusions: FD3-XA config.

The requirements and design of the WLS are strictly related to the modification of the FD1/FD2 XA design, and to the LAr target

To fit in the FC rings→ WLS: 8 x 100 cm²

Reflector

WLS: Assessment of the radioactivity budget

Results from ICPMS U-238 ~ 15-20 ppt; Th-232 ~ 5 ppT

Results γ -ray spectrometry on a 800 g sample Ra-226 <160 μ Bq/kg (from Bi-214) K-40 < 1.7 mBq/kg Cs-137 < 44 mBq/kg

To be compared with Ar-39 (1 Bq/kg) and FR4 (O(10mBq/kg))

This material can be employed for low background applications
SoLAr, Legend,...

Backup

FD3-XA config. & WLS Specifications

- To define the WLS design the XA simplified config. & the LAr target must be defined:
 - FD3 Target: LAr or LAr/Xe mixture
 - WLS Bulk material: PMMA with PEN/PS/pTP lining?
 - Thermal coupling of PMMA/PS sandwich may be doable. Or PEN lining
 - SiPM readout only on one long edge?
 - WLS chromophore concentration/absorption length (relevant for PDE of large/long bars)
 - WLS thickness
- Low radioactivity (O(10 ppt) U-238/Th-232) will be a plus, to push FD3 Phyiscs reach at low Energy (Solar/SN neutrino, OnDBD). Mechanics should be low activity compliant→ NO G10-FR4

DF for FD2 M0

- Production, pTP coating and installation of 400 DF

- Two manufacturers different dichroics design optimized for AO<u>I=45° in LAr</u>

- ZAOT (Italy): 144 x (202 x 97.5 x 1.1) mm³

128 x (148 x 148 x 1.1) mm³

- PE (Spain): 128 x (148 x 148 x 1.5) mm³

2.3 x FD1 surface

Assessment of ZAOT DFs performances in LAr: previous results

- Measurements of the PDE in LAr of one FD1-XA equipped with
 - three OPTO (0 < position < 24 cm)
 - three ZAOT (24 < position < 48 cm)
- Effect foreseen by GEANT based Simulations

2023/03/03 - Vikuiti blocks - new lightguide - OPTO Vs ZAOT

pTP coating

The coating report from UniCAMP

Date	Size	Disc position	Mass before	Mass after
26/01/23	143.75x143.75	Central (01)	66,62698 g	66,72385 g
26/01/23	143.75x143.75	External (07)	66,17028 g	66,22962 g
N. filters = 12		pTP = 4,000 g		Pc=2,2*10-5 mbar

Main pTP coating site: UNICAMP

- Coating capabilities: 2 batches/day => 24/day
- Evaporation of ~400 ug/cm2
- Since January 2023 the UniCamp Facility evaporated
 - 128 PE filters and
 - 54 ZAOT DF for the VD XA PDE setups
- Twin facility will participate at the FD2 pTP coating efforts at INFN Napoli starting from spring 2024

Thank you!