SLoMo and APEX as Low Background Detectors

Eric Church Stonybrook University APEX Workshop 28-June-2023

Outline

- SLoMo History
- Physics Sensitivity in 1 slide
- Radiopurity
- Simulation package -- sndwrm
- Photon counting
- SLoMo => APEX

Physics in SLoMo

- JINST 2020
- Church, Jackson, Saldanha

• JPhysG 2023

21-person proto-collaboration deeply integrated into Snowmass 2022. *https://iopscience.iop.org/article/10.1* 088/1361-6471/acc394

Fiducialization

- 100 keV threshold for nuclear recoil
- 2E-10/cm3/sec from cold cryostat steel only (cleaner than default DUNE)
- 1.4 years, 3 kT fiducial volume shown

Distinction with APEX is that the PDS in SLoMo views an interior volume with a densely instrumented array of SiPM modules. And places radiopurity concerns foremost.

Radiopurity

- See Chris Jackson's talk at this workshop
- Juergen Reichenbacher's, 12-June-2023, Low Energy Physics Meeting and this workshop

Summary Table of External Backgrounds

Modules 1 & 2

external background	4pi flux in cavern [cm^-2 s^-1]	reduction factor	attenuation factor	area factor	4pi flux at LAr [cm^-2 s^-1]	rate in full LAr (VD) [Hz]	rate in HD [Hz]	
cavern neutrons	2.94E-06	21.816	10.908	1.3687	2.70E-07	5.34E+00	4.63E+00	predicted and 4.6+/-1.1 Hz in HD from simulation of 1x2x6
n-capture gammas from cryostat	N/A	N/A	N/A	1.3687	1.68E-06	3.32E+01	1.50E+00	predicted rates [Hz] w/ approx. gamma-att. for 1.5 MeV
n-capture gammas from rock/shotcrete	3.75E-06	13.807	6.9035	1.3687	5.44E-07	1.08E+01	4.87E-01	predicted rates [Hz] w/ approx. gamma-att. for 1.5 MeV
cavern gammas from rock/shotcrete	12.60418	23.985	11.9925	1.3687	1.0510	2.08E+07	9.40E+05	predicted rates [Hz] w/ approx. gamma-att. for 1.5 MeV
foam gammas	N/A	N/A	N/A	1.0000	0.0441	8.72E+05	3.95E+04	predicted rates [Hz] w/ approx. gamma-att. for 1.5 MeV

SLoMo

- VD in all respects, including PoF!, with following changes
- Outer water shielding
- Radiopure steel, etc ... (See Chris Jackson's talk)
- UAr
- Heavily fiducialize events
- Interior structure
 - Optically hermetic acrylic box
 - Perhaps allows to confine UAr to smaller volume (2 Ar circulation systems)
 - Not necessary to be acrylic
 - Something to hold WLS panels w SiPM modules
 - But ... the same COMSOL studies that show the xArapucas do not distort the E-field between H-bars, will likely show the same for our Acrylic
 - And it can be grounded for charge-up concerns
 - Yes, there are buoyancy, etc., considerations

sndwrm

- Simulation of Neutrino Detector With Radiopure Module
 - (name adapted from clever colleague Richard Saldanha)
 - A "standalone" simulation, ala Laura's talk.

github.com/echurch/sndwrm/liquid_deception/README

> emacs -nw opt_pbomb.mac ## SiPM SETTINGS ## /sndwrm/det/setDetectorSiPMsOnAcrylic true /sndwrm/det/setDetectorSiPMsOnCathode true /sndwrm/det/setDetectorSiPMSize 20.0 cm /sndwrm/det/setDetectorSiPMThickness 0.1 cm

/sndwrm/det/setDetectorSiPMPhotoCathodeCoverage 0.10 #SiPM Coverage
/sndwrm/det/setAcrylicRadius 4.5 m #Acrylic width/heigth (not larger than 6)
/sndwrm/det/setAcrylicLength 40. m #Acrylic length (not larger than 60)

/sndwrm/material/setG10SpecRef .44 #Anode planes reflectivity
/sndwrm/material/setAcrylicSpecRef .97 #Acrylic walls reflectivity
/sndwrm/material/setLArAbsLength 50 m #Max length photon travel in Argon

> ./sndwrm opt_pbomb.mac

Simple Geometry

- G10 reflectivity
- Acrylic reflectivity
- Darkside SiPM Modules
 - Can be swapped out for xArapucas and H-bars
- Limitations of geometry
 - No cathode
 - No internal structure
 - All in C++, not gdml
- Engineering drawings for SLoMo would begin to be nice at this stage of development.

Prototype SiPM tile

Darkside module coverage Pacific Northw

Example SiPM module coverage for illustration

SLoMo photon detection

- Example: 10% coverage of DarkSide modules viewing inner ~4 kTonnes mounted on light-tight barrier
 - 25% detection efficiency imposed after the fact
 - 0.5 Q.E. * 0.5 WLS efficiency
 - 0.10* 0.5*0.5 = 2.5%
 - ~equivalent to 100% tiling all inner surfaces with xArapucas
- Of course, the (x)Arapucas are presumed to remain on the outer walls at the modest VD1 coverage.

Photon counting

1250 photons/100 keV nuclear recoil Based on iopscience.iop.org/article/10.1088/1748-0221/15/09/P09026

CRP reflectivity = 44%, acrylic reflec = 97%, λ_{attn} = 50m

Multiply by 0.25 efficiency for total detected photons

Photon counting

Previous plots are of response to 1250 photons/100 keV n.r. in SLoMo

- ~ 50 keV e.r.
- < photons > = 600*0.25 = 150
- 150ph/0.050MeV ee = 3000 ph/MeV ee
 - About 18x APEX's full-volume coverage

Costs

- See JINST iopscience.iop.org/article/10.1088/1748-0221/15/09/P09026
- 20% DarkSide module coverage
 - 7400 modules ~ 50 M EUR
 - ~175 detected n.r. photons / 100 keV n.r. event
 - Allows to do PSD to reject all gamma activity and do a WIMP search
- 10% coverage
 - 3700 modules ~ 25 M EUR
 - ~130 n.r. photons/event
 - Can probably still do PSD for 100 keV n.r.
 - Maybe even for a 50 keV n.r.
- Let's stress: a Dk Matter search may make most sense if, say, LZ sees a signal, or GADMC/ARGO doesn't go forward ...
- Our Darkside20k (and DS20k adjacent) SLoMo colleagues helping keep us in contact with developments and potential SiPM module tests

The limit SLoMo->APEX

- Keep all the radiopure materials and external shielding
 - ... and QA/QC precautions!
- Remove acrylic + PDMs
- Add xArapucas, structural framework: Al bars, etc
 - fSiPM = false; fArapuca = true;
- Count photon hits on xArapucas instead of SiPMs
 - Use the correct QE: 25% -> ~2%
 - (after the fact)

SLoMo->APEX

• Drop the Acrylic+SiPMs, add the xArapucas

²⁰⁸TI from upper CRPs (G10)

$\beta,$ then 2.6 MeV gammas

This also illustrates the effect of LAr selfshielding we exploit to shield against 21

MHz of rock/cement gammas. 16 28-June-2023 Eric Church I SBU APEX Workshop

PNNI

Simulations for APEX

- We have Carlos Moreno, a summer PNNL student to help run some APEX simulations in sndwrm
 - Gammas from xArapucas *detected by* xArapucas
 - neutrons from cryostat and rock seen by xArapuca
 - Perhaps see if we can see the 6 MeV capture peak with a simple detector response model
 - 21 MHz of gammas from outside!
 - Very little self-shielding in APEX
 - We'll explore this hit rate and spectrum

Conclusions

- Collaboration should decide which Low Energy physics we can and want to study -- in world-leading way
 - APEX can likely expand scope for supernova burst and solar neutrinos
 - radiopurity of materials, QA/QC are needed in all cases
- Low background module specifications follow from that.
- Such physics studies have at least initially been performed in a SLoMo detector where we aim for solar ns, SN physics expansion, and also more ambitiously, e.g., CNO, $0\nu\beta\beta$, WIMP searches.
 - Elucidated in the two papers cited on slide 3
- Low-energy physics reach is yet to be demonstrated in APEX
 - We both look forward to, and can help with, those studies

