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Abstract The Tianlai cylinder array is a pathfinder for developing and testing
21cm intensity mapping techniques. In this paper, we use numerical simulation to
assess how its measurement is a↵ected by thermal noise and the errors in calibra-
tion and map-making process, and the error in the sky map reconstructed from a
drift scan survey. Here we consider only the single frequency, unpolarized case. The
beam is modelled by fitting to the electromagnetic simulation of the antenna, and
the variations of the complex gains of the array elements are modelled by Gaussian
processes. Mock visibility data is generated and run through our data processing
pipeline. We find that the accuracy of the current calibration is limited primarily
by the absolute calibration, where the error comes mainly from the approximation
of a single dominating point source. We then studied the m-mode map-making
with the help of Moore-Penrose inverse. We find that discarding modes with sin-
gular values smaller than a threshold could generate visible artifacts in the map.
The impacts of the residue variation of the complex gain and thermal noise are
also investigated. The thermal noise in the map varies with latitude, being min-
imum at the latitude passing through the zenith of the telescope. The angular
power spectrum of the reconstructed map show that the current Tianlai cylinder
pathfinder, which has a shorter maximum baseline length in the north-south di-
rection, can measure modes up to l . 2⇡bNS/� ⇠ 200 very well, but would lose a
significant fraction of higher angular modes when noise is present. These results
help us to identify the main limiting factors in our current array configuration and
data analysis procedure.

1 INTRODUCTION

Neutral hydrogen (HI) is ubiquitous in our Universe, it provides a way to probe the early
Universe, and can serve as a tracer of the large-scale matter distribution to reconstruct the
expansion history of the Universe (e.g. Furlanetto et al. 2006; Pritchard & Loeb 2012). Making
use of the baryon acoustic oscillation (BAO) which can be treated as a cosmological standard
ruler, we can measure the dynamics of dark energy. In the past, the BAO has been measured
in the optical galaxy redshift survey(e.g.Blake & Glazebrook 2003; Seo & Eisenstein 2003;
Eisenstein et al. 2005). Radio observations would complement the optical surveys, and may
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though the actual input map which we use to generate the visibilities does have the l > 600
modes. This is done by first computing the spherical harmonics coe�cients of it, setting those
components with l > 600 to zero, and transform back. Similarly, we also discard all the m = 0
modes, which are prune to error as they do not vary over time. This also removes the l = 0
mode, i.e. the global mean temperature of the map. As a result, some pixels of the map become
negative. This map is shown as the left panel of Fig. 10. We note that with the large l-modes
removed, this maps shows some fringes around the bright sources.

In the right panel of Fig. 10 we show the reconstructed sky map in the ideal case, i.e.
from the mock visibilities generated by the sky model, without any noise or gain variation.
The reconstructed map is smoothed with a Gaussian filter, corresponding to the maximum
resolution of the beam in the East-West direction, FWHM ⇠ 0.3997m/30m ⇡ 0.0133 rad.

As we can see, even in this ideal case, there are di↵erences from the input map. Besides
the longitudinal sidelobes and negative latitude lines around the bright points which we noted
in Fig. 9, another notable feature are the horizontal stripes extended from the brighter part of
the galactic plane, which form a comb-like structure.

Fig. 11: The reconstructed map with threshold ✏ = 10�3 (Left) and 10�5 (Right).

In Figure 11 we plot the reconstructed map in the ideal case with two cut o↵ threshold
values: ✏ = 10�3 in the Left panel (same as the reconstructed map in Fig. 10), and 10�5 in the
Right panel. We see that for ✏ = 10�5, the comb-like artifact near the galactic plane disappears,
and generally a more accurate map is reconstructed. This is because when we impose the cut o↵
threshold, modes with small eigenvalues or singular values are discarded. These modes however
also contain some information about the sky. Comparing with the input map, setting these
modes to zero is equivalent to adding their negative. Unlike modes generated by noise, however,
these modes are regular and show up clearly in the map. In the left panel of Figure 12, we plot
the di↵erence between the maps of the two thresholds. The di↵erences show most clearly near
the brightest part of the sky, i.e. near the bright point sources, and the brightest part of the
galactic plane. The comb-like structure are mainly due to missing small m (e.g. m < 10) modes
caused by the pseudo-inverse truncation. If we denote these missing small m (e.g. m < 10)
modes as �alm, the missing map component would be

P
lm �almYlm(n). We plot the map

made with only the m < 10 and l < 200 modes in the right panel of Figure 12, and one can see
clearly the comb-like structure. On the other hand, the structure around the few bright point
sources do not show up in this case, which shows that they are generated mostly by the high
m modes.

We also show the spherical harmonic coe�cients alm for the di↵erence map of ✏ = 10�3 and
✏ = 10�5 case in Figure 13. As can be seen from the figure, the largest alm of this di↵erential
plot are those m < 10 modes, concentrated near the `-axis. We expect such small m modes will
produce sizable features along the latitude lines, which would appear as the comb-like structure
we see in the reconstructed map with ✏ = 10�3.



• Use of Moore-Penrose pseudo-inverse generates striping (or wiggles) along the 
theta direction. 


• This is due to sharp cuts along the ell direction in the (l,m) spherical harmonics 
coefficients plane, introduced by the threshold in eigenvalues when applying the 
Moore-Penrose 


• To overcome (partially) this, additional filter in (l,m) plane where applied in 
J.Zhang et al. papers (2016) 


• Another possible way to reduce this effect is to transform the sharp threshold 
into a smooth threshold


• It is useful to revisit the 2016 papers : (l,m) filter, R-response matrix and  filtering 
using the error covariance matrix, and compute the corresponding quantities to 
get a better explanation and understanding of theses effects for this paper 


• Note also that the noise covar. Matrix should be taken into account in the 
Moore-Penrose pseudo-inverse expression.  



3.5. SOLVING THE SYSTEM 61

– 2 –

h
Vij

i
=

h
Lij(

~̂n)

i
⇥

h
I(~̂n)

i
+ [nij ]

h
Vij

i
=

h
Lij(l,m)

i
⇥

h
I(l,m)

i
+ [nij ]

lmax ⇥ lmax

0

BBBBBB@

�V�p

ij
(m0)

�V�p

ij
(m1)

· · ·
�V�p

ij
(mmax)

1

CCCCCCA
=

0

BBBBBB@

L�p

ij
(`, m0)

L�p

ij
(`, m1) 0

0 · · ·

L�p

ij
(`, mmax)

1

CCCCCCA
⇥

0

BBBBBB@

I(`, m0)

I(`, m1)

· · ·

I(`, mmax)

1

CCCCCCA
+ noise (1)

0

BBBBBB@

V
�p

ij
(↵0)

V
�p

ij
(↵1)

· · ·

V
�p

ij
(↵n)

1

CCCCCCA
=

0

BBBBBB@

L
�p

ij
(m0, l)eim↵0 L

�p

ij
(m1, l)eim↵0 · · · L

�p

ij
(mmax, l)eim↵0

L
�p

ij
(m0, l)eim↵1 L

�p

ij
(m1, l)eim↵1 · · · L

�p

ij
(mmax, l)eim↵1

· · ·

L
�p

ij
(m0, l)eim↵n L

�p

ij
(m1, l)eim↵n · · · L

�p

ij
(mn, l)eim↵max

1

CCCCCCA
⇥

0

BBBBBB@

I(m0, l)

I(m1, l)

· · ·

I(mn, l)

1

CCCCCCA
+noise

L(↵, �)I(↵, �) /
ZZ

V (u, v)e�i2⇡(u↵+v�)dudv

V (u, v) =

ZZ
L(↵, �) I(↵, �) ei2⇡(u↵+v�)d↵ d�

Vij =< s⇤
i sj > �! I0L(✓)ei

2⇡d
� cos ✓

Lij(✓,') ! Lij(✓,' � ↵p(t))

Lij(`, m) ! Lij(`, m) e�im↵p(t)

h
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Figure 3.4.1: Schematic representation of m-mode decomposition in spherical harmonics space of
the skymap reconstruction from visibilities.
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3.5 Solving the system

Now, the mainly problem is calculating the pseudo-inverse of the Lm matrix, which correspond to
Au matrix in planar geometry. They are same as each other in mathematical analysis. So we only
present this steps just in spherical geometry.

The sky brightness temperature spherical harmonics coefficients can be estimated by solving
each of the m-modes linear systems defined by Eq. 3.4.14 . The Lm matrix size is 2nbeams⇥`max,
with `max around few thousands for array sizes . 100 m and a number of beams up to a to a few
thousands for the current generation of instruments. Although these systems are usually under-
determined, the solution can formally be written as:

h
bI(`)

i

m

= Hm

h
Ṽ

i

m

(3.5.1)

where [] are used to denote vectors and Hm is the noise weighted Moore-Penrose pseudo-inverse
of Lm [9].

To make map from a given set of visibilities with noise, we look for a maximum likelihood
solution. Here we assume that the noise on visibility measurement follows a Gaussian random
process, with variance Nm =< [ñ]

m
[ñ]

†
m

>. We consider moreover that noise is uncorrelated
for different m-modes. This hypothesis is valid as long as the time domain noise is a Gaussian
random process characterised by a power spectrum. The likelihood function of the measurement
can be written as,

p(V|I) / exp[�1

2
(V � LI)

T
N

�1
(V � LI)].
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The solution is given by
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Redundant baselines are counted once with their noise level being scaled accordingly, i.e. �2
n /

N�1
rb

, where Nrb denotes the number of redundant baselines (number of antennae pairs with the
same baseline).

If we further assume that noise is uncorrelated between different baselines, the noise covari-
ance matrix Nm for each m becomes diagonal. In this case, the computation can be further
simplified as
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Here, N�1
=

⇣
N� 1

2
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N� 1

2 , which could be obtained simply by taking the inverse of square root

of each non-zero diagonal element. However, N
� 1

2
m Lm is often a non invertible matrix, so we

have to use the pseudo-inverse method. Here, we use the Singular Value Decomposition (SVD) of
a matrix, for which we need to compute the inverse of the matrix with the eigenvalues. Given a
m ⇥ n real or complex matrix A, which can be factorized in the form

A = U⌃V † (3.5.5)

where U is an m ⇥ m real or complex unitary matrix, V † (the conjugate transpose of V , or simply
the transpose of V if V is real) is an n ⇥ n real or complex unitary matrix, and ⌃ is an m ⇥ n
rectangular diagonal matrix which has at most min(m, n) non zero eigenvalues, denoted by ⌃ii.
These diagonal entries ⌃ii are known as the singular values of A. A common convention is to list
the singular values in descending order, then the diagonal matrix ⌃ is uniquely determined by A,
though the matrices U and V are not unique. Using SVD, the pseudo-inverse of the matrix A is
given by

B ⌘ A�1
= V ⌃̄

�1U † (3.5.6)

where ⌃̄
�1 is a n⇥m diagonal matrix, which is formed by replacing every nonzero diagonal entry

⌃ii by its reciprocal 1/⌃ii and transposing the resulting matrix.
Due to limited numerical precision in the computation, even zero eigenvalues elements of ⌃i,i

will have some small non-zero value, which would give rise to large ⌃
�1
i,i

and affect the result
greatly if left unattended. The contribution of noise to the reconstructed sky modes are also large
for the modes with small values. In order to limit the contribution of noise and to avoid numerical
instabilities, we limit the value of eigenvalues, and the small eigenvalues of ⌃ are set to 0 before
the inversion, and its inverse also set to 0 and ignored in subsequent computation. In practice,
we set two threshold values for the diagonal elements. If the diagonal element ⌃i,i < ⌃0,0 ⇥ ✏r

Diagonal noise 
matrix
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where Darray is the diameter of the disk covering the full array. For PAON-4 with Darray ⇠ 18 m,
`max = 750 and nside = 256 would be more than enough for reconstructing maps. However, The
Tianlai circular array configuration with Darray ⇠ 40 m requires `max & 1200. We have thus used
`max = 1500 and HEALPix nside = 512, corresponding to a pixel resolution of ⇠ 6.9 arcmin, for
most of the results presented in this thesis.

3.6.2 Instrument response and transfer function

The m-mode reconstruction matrix Rm ⌘ (HmLm) tells us how the estimated sky spherical
harmonics coefficients (bI(`, m)) are related to the true sky ones (I(`, m))

h
bI(`)

i

m

= Rm [I(`)]
m

(3.6.1)

Ideally, if Rm = I where I is the identity matrix, then we would be able to recover the sky
spherical harmonic m-mode completely from the observations. However, in reality this is not
possible. Although each m mode is measured independently for a full circle transit observation,
for each given m the different ` coefficients are still correlated, the physical measurement data is
a mix of different ` mode contributions. The Rm matrix gives the window function in `-space
for the estimated sky. We can define the core response matrix R by extracting the diagonal terms
from individual Rm matrices:

R(`, m) = Rm(`, `)

For reconstruction, the R(`, m) is insufficient and the original Rm matrices are needed, but the
R(`, m) matrix can give some idea of how well an (`, m) mode is measured with the given array,
so it can help us to see the effectiveness of our reconstruction in the (`, m) space.

We can further compress the response function by computing the transfer function, which is
defined by the average over the m-modes from the response matrix R,

T (`) = h|R(`, m)|im (3.6.2)

Let’s consider visibilities corresponding to an input white noise map, without any additional noise
(�noise = 0)
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Figure 4.4.3: Comparison of the R matrix for regular 1(left) and regular2 (right) configurations.
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Figure 4.4.4: Comparison of the error variance matrix for regular 1(left) and irregular2 (right)
configurations.
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Figure 4.5.1: The synthetic beam for Tianlai cylinder irregular configuration.
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Figure 4.5.2: Comparison of the R matrix for the Irregular 1 (left) and Irregular2 (right) configu-
rations.
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Notice the limited ell range at low m 

This is where the pseudo-inverse 

threshold has the largest impact, hence 
the striping 


