Comments on Cylinder simulation and map
 making paper
 R. Ansari - 30 May 2022

A simulation of calibration and map-making errors of the Tianlai cylinder pathfinder array

Kaifeng $\mathrm{Yu}^{1,2}$, Fengquan Wu^{1}, Shifan Zuo ${ }^{1}$, Jixia Li 1, Shijie Sun ${ }^{1}$, Yougang Wang ${ }^{1}$ and Xuelei Chen ${ }^{* 1,2,3}$

${ }^{1}$ National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
${ }^{2}$ School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{3}$ Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China

Fig. 11: The reconstructed map with threshold $\epsilon=10^{-3}$ (Left) and 10^{-5} (Right).

- Use of Moore-Penrose pseudo-inverse generates striping (or wiggles) along the theta direction.
- This is due to sharp cuts along the ell direction in the (l,m) spherical harmonics coefficients plane, introduced by the threshold in eigenvalues when applying the Moore-Penrose
- To overcome (partially) this, additional filter in (l,m) plane where applied in J.Zhang et al. papers (2016)
- Another possible way to reduce this effect is to transform the sharp threshold into a smooth threshold
- It is useful to revisit the 2016 papers : (I,m) filter, R-response matrix and filtering using the error covariance matrix, and compute the corresponding quantities to get a better explanation and understanding of theses effects for this paper
- Note also that the noise covar. Matrix should be taken into account in the Moore-Penrose pseudo-inverse expression.

$$
[\widehat{\mathcal{I}}(\ell)]_{m}=\mathbf{H}_{m}[\tilde{\mathcal{V}}]_{m} \quad \begin{aligned}
\widehat{\mathcal{I}}_{m} & =\left(\mathbf{L}_{m}^{\dagger} \mathbf{N}_{m}^{-1} \mathbf{L}_{m}\right)^{-1} \mathbf{L}_{m}^{\dagger} \mathbf{N}_{m}^{-1} \mathcal{V}_{m} \equiv \mathbf{H}_{m} \mathcal{V}_{m} & \text { Diagonal noise } & \text { matrix }
\end{aligned} \quad \mathbf{H}_{m}=\left(\mathbf{L}_{m}^{\dagger} \mathbf{N}_{m}^{-1} \mathbf{L}_{m}\right)^{-1} \mathbf{L}_{m}^{\dagger} \mathbf{N}_{m}^{-1} \quad\left(\mathbf{N}_{m}^{-\frac{1}{2}} \mathbf{L}_{m}\right)^{-1} \mathbf{N}_{m}^{-\frac{1}{2}}
$$

Response
matrix $\quad \mathbf{R}_{m} \equiv\left(\mathbf{H}_{m} \mathbf{L}_{m}\right) 1$

Compressed

$$
\underset{\text { matrix }}{\text { Response }} \quad \mathbf{R}(\ell, m)=\mathbf{R}_{m}(\ell, \ell)
$$

From J. Zhang PhD dissertation

Figure 4.4.3: Comparison of the R matrix for regular 1(left) and regular2 (right) configurations.

Notice the limited ell range at low m This is where the pseudo-inverse threshold has the largest impact, hence the striping

Figure 4.5.2: Comparison of the R matrix for the Irregular 1 (left) and Irregular2 (right) configurations.

