## Impact of neutrino interaction uncertainties on oscillation measurements

Clarence Wret April 15 2024 Nulnt 2024, Sao Paolo







## Introduction

- Accelerator neutrino oscillation experiments generally in the 0.5-5 GeV region
  - Some with wide, some with narrow band beam
- Studying (anti-) $v_{\mu}$  disappearance and (anti-) $v_{e}$  appearance in an (anti-) $v_{\mu}$  beam
- Complex scenario of which neutrino interactions matter
  - What matters for T2K, may not matter for NOvA, may not matter for DUNE
  - Measurements from a cross-section experiment may not extrapolate well to an oscillation experiment



## Introduction

Oscillation parameters change the rate and shape of the appearing and disappearing neutrinos



• Relies on the model prediction in the absence of oscillations

- Constrain this model  $\rightarrow$  constrain your oscillation parameters!
- Finding cross-section effects which are degenerate with oscillation parameters is the **nightmare** scenario

UNIVERSITY OF

OXFORD

### What can go wrong?

#### Flavour identification

- Is the increased rate of CC1e from oscillations, or is it a poorly modelled NC1 $\pi^0$  background? Or NC1 $\pi^{\pm}$  mistaken for CC1 $\mu$ ?
- Attribute a cross-section effect of higher  $v_e$  rate to oscillations  $\rightarrow$  estimate a larger  $\delta_{CP}$  and  $sin^2\theta_{13}$





#### Neutrino energy estimation

- Is the frequency of the oscillation due to  $\Delta m^2$ , or biases in neutrino energy reconstruction from mismodelling?



**Clarence Wret** 

### What can go wrong?

#### • Rate of appearance and disappearance

- Is the  $v_e$  rate higher because of a larger value of  $\delta_{CP}$ , or is your model for  $v_e \rightarrow v_\mu$  wrong?
- Is the increased rate of  $v_{\mu}$  due to  $\sin^2\theta_{23}$ , or a larger cross section?



XFORD



- The beam is characterised by high-statistics samples at the near detector(s) before long baseline oscillations
- Events observed at the far detector have many shared uncertainties with the near detector
  - Constrain flux and interaction model using near detector data

$$N_{\rm ND}^{\alpha}(\vec{x}) = \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm ND}^{\alpha}(\vec{x})$$
$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$

• Mitigates many of the issues, e.g. size of cross sections

**Clarence Wret** 

## Role of atmos. down-going events



- For atmospheric neutrinos, there is no near detector, but it is largely addressed by down-going neutrinos
  - Very small oscillation probability in region
  - Effectively acting as a near-detector constraint throughout a large neutrino energy range

#### 

## Role of external data

- In some cases, data from the near detector might not suffice
  - e.g. unmagnetised detector, but want NC1 $\pi^+$  cross section to understand the background in  $\nu_\mu$  disappearance
- Or, you might not have a near detector!
- External data is often used to estimate the cross section, and prevent a near-detector analysis from over-constraining the model



# Issues with the near detector The v<sub>μ</sub> flux at the FD has a minimum where the v<sub>μ</sub> flux at the ND has a maximum



- Oscillated  $v_{\mu}$  flux gives rise to  $v_e$  signal at the FD
- Intrinsic  $v_e$  at ND do not have same neutrino energy spectrum as the  $v_e$  signal at FD
- Reliance on model for extrapolating in neutrino energy

#### Issues with the near detector Acceptance differences from **different size**

UNIVERSITY OF

- Functionally identical does not mean identical acceptance



- Different target material and detector design means additional model dependence in  $CH \rightarrow H_2O$
- Different detector technologies and geometry may mean different particle acceptance Clarence Wret

- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- All estimators are biased
  - Try to **reduce** the amount of bias
  - Understand the uncertainty on the bias

**Clarence Wret** 

- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- All estimators are biased
  - Try to **reduce** the amount of bias
  - Understand the uncertainty on the bias

**Clarence Wret** 

- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- All estimators are biased
  - Try to **reduce** the amount of bias
  - Understand the uncertainty on the bias

Clarence Wret

- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- All estimators are biased
  - Try to reduce the amount of bias
  - Understand the uncertainty on the bias

**Clarence Wret** 



- Energy reconstruction method is function of selection and detector technology
- NOvA, DUNE and SBN have sampling calorimeters and often events with multiple tracks
  - CC-inclusive selection
  - Energy estimator which sums up energy deposits



# Calorimetric energy reconstruction Simple simulation result agrees well with NOvA official figure: ~11% RMS



 Interaction modes bias differently, e.g. DIS has multiple missing neutrons and pion FSI

**Clarence Wret** 

Calorimetric energy reconstruction

- Generally more precise energy estimate than kinematic method
- Susceptible to missing neutrons and other particles
- Final-state interactions directly bias the estimator
- Relies on **correct PID of every track**, otherwise risk bias by rest mass (e.g. mistake proton for pion)
- Will always have bias from **initial state motion** 
  - Smaller impact at higher energies, e.g. NOvA and DUNE
- CC-inclusive selection means complex contributions from multiple interaction modes

## Kinematic energy reconstruction

- Energy reconstruction method is function of selection and detector technology
- T2K and HK are dominated by  $CC0\pi$  interaction, and Cherenkov threshold for proton is >1 GeV in H<sub>2</sub>O



- Single-track events
- Kinematic reconstruction using **only lepton** information
- Assumes 4 legged CCQE interaction, and initial state nucleon at rest

$$=\frac{2m_N E_l - m_l^2 + m_{N'}^2 - m_N^2}{2\left(m_N - E_l + p_l \cos \theta_{\nu,l}\right)}$$

#### Kinematic energy reconstruction

- CCQE contribution largely unbiased
- 20-25% RMS

- CC1π+FSI and 2p2h contribution less than 25%of total signal
- When applied to  $CC1\pi$  sample, replace  $m_p$  with  $m_\Delta$ 
  - Works because T2K  $\Delta(1232)$  dominated



Kinematic energy reconstruction

- Important to get the CCQE, 2p2h and CC1π contributions correct
  - They bias the estimator differently: mistaking non-CCQE for CCQE imposes a bias
- Direct dependence on nuclear initial-state model
  - Relatively large contribution at  $E_{\nu}\text{=}0.6~GeV$
- Only dependent on FSI in the absorption
  - Proton may lose energy to nucleus; does not matter in estimator
  - Secondary dependence on FSI through missing particles: think it's four-limbed interaction when it was not
- Small contribution from higher W resonances, SIS and DIS contributions

#### Event counts at the FDs

| Sample                            | T2K |     | Hyper-Kamiokande | DUNE |
|-----------------------------------|-----|-----|------------------|------|
| $N_{\mu}^{ m rec}$ FHC            | 318 | 211 | 10000            | 7000 |
| $N_{\mu}^{ m rec}$ RHC            | 137 | 105 | 14000            | 3500 |
| N <sub>e</sub> <sup>rec</sup> FHC | 108 | 82  | 3000             | 1500 |
| N <sub>e</sub> <sup>rec</sup> RHC | 16  | 33  | 3000             | 500  |

- HK and DUNE will have enough events to be limited by the ~3% (anti-)v<sub>e</sub> uncertainty
- Current experiments at the 3-5% level uncertainties\*

XFORD

## Neutrino cross-section uncertainties contribute ~3% to

number of  $v_e$  on NOvA and T2K

M. Elkins, T. Nosek, Neutrino 2020 poster



|       | Sample           | Uncertainty source (%) |             |              | Flux Interaction (%) | Total(%)    |
|-------|------------------|------------------------|-------------|--------------|----------------------|-------------|
|       | Sample           | Flux                   | Interaction | FD + SI + PN |                      | 10141 (70)  |
|       | 1D. 1            | 2.9 (5.0)              | 3.1 (11.7)  | 2.1 (2.7)    | 2.2 (12.7)           | 3.0 (13.0)  |
|       | $\overline{\nu}$ | 2.8 (4.7)              | 3.0 (10.8)  | 1.9 (2.3)    | 3.4 (11.8)           | 4.0 (12.0)  |
|       | 1D a V           | 2.8 (4.8)              | 3.2 (12.6)  | 3.1 (3.2)    | 3.6 (13.5)           | 4.7 (13.8)  |
|       | $\overline{v}$   | 2.9 (4.7)              | 3.1 (11.1)  | 3.9 (4.2)    | 4.3 (12.1)           | 5.9 (12.7)  |
|       | 1Re1de v         | 2.8 (4.9)              | 4.2 (12.1)  | 13.4 (13.4)  | 5.0 (13.1)           | 14.3 (18.7) |
| Clare | ence Wret        |                        |             |              |                      |             |



#### Fake-data studies

- Realistically, won't have a perfect interaction model for a *timely* oscillation analysis
- Reasonable best case scenario: a model that fits the experimental data, but is not applicable to other experiments
  - The model is *effective*, but **not complete**
  - The physics is not modelled exactly, but approximately, with effects soaked up in the wrong part of the model
- What if nature is described by a different model; what bias is incurred on oscillation parameters?
- The bias this may cause is generally mitigated by "fake-data studies"
- Can change exclusion statements and model choices

#### 

#### Fake-data studies

- Use an alternative model to make a prediction for near and far detectors
- Fit to the alternative model at the near detector
  - Set of parameters that best describe the alternative model





- $\delta_{CP}$  sensitivity from  $v_e$  below 1 GeV  $\rightarrow v_e/v_{\mu}$  important
- Neutrino flavour differences also limiting atmospheric results



## SBN

- For SBN programme and appearance searches, anything mimicking  $v_e$  appearance is important
  - e.g. NC1 $\gamma$ , NC1 $\pi^0$  DIS, NC1 $\pi^0$  resonant, NC1 $\pi^0$  coherent
  - Many constrained by dedicated measurements and

sidebands



•  $v_e/v_\mu$  differences from nucleon and nuclear environment, especially considering <sup>40</sup>Ar



## What do I worry about?

- Will (anti-)v<sub>e</sub> uncertainties fall below 2-3%?
  - Critical for  $\delta_{CP}$ , mass ordering, for both **atmospheric** and **accelerator** experiments, and **MiniBooNE LEE**
- Do we understand transition, SIS and DIS interactions sufficiently for DUNE?
  - Worry that the day DUNE ND turns on, it'll show how poorly we describe these samples
- Will we understand nuclear effects in <sup>40</sup>Ar nuclear in 10 years time?
- Will we understand neutron final-state interactions sufficiently to use them for e.g. energy estimators and tagging events?
- v<sub>τ</sub> uncertainties for atmospheric neutrinos and mass ordering sensitivity
- How do we diagnose low momentum pion modelling



## Summary

- Neutrino interactions are a central ingredient to the accelerator and atmospheric neutrino measurements
  - Starting to see importance on current-generation experiments like T2K, NOvA, SK
  - Critical for next-generation experiments HK and DUNE
- Experiments and generator groups are including latest model developments
- Theory community gaining people and working hard at developing modelling
  - e.g. <sup>40</sup>Ar spectral functions, 2p2h models and uncertainties, single pion production, sophisticated nuclear models...
- Very exciting time for the field, and an excellent week to be in Sao Paolo!

**Clarence Wret** 



## Backups





#### Neutrino fluxes



#### 

NOvA

#### Jeremy Wolcott, NuInt17



#### NOvA

#### M. Elkins, T. Nosek, Neutrino 2020 poster



#### **Clarence Wret**

#### Atmospheric

Hyper-K's Sensitivity to  $\delta_{_{\rm CD}}$  with Atmospheric neutrinos



#### Systematic Effect on Hierarchy Sensitivity at Super-K



**Clarence Wret** 

UNIVERSITY OF

Reduction in  $\Delta \chi^2$  Rejction of Wrong Hierarchy Relative To No Systematics