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Introduction

* Accelerator neutrino oscillation experiments generally in the

0.5-5 GeV region

- Some with wide, some with narrow band beam
« Studying (anti-)v, disappearance and (anti-)ve appearance in

an (anti-)v, beam

« Complex scenario of which
neutrino Interactions matter

- What matters for T2K,
may not matter for NOVA,
may not matter for DUNE

- Measurements from a
cross-section experiment
may not extrapolate well to
an oscillation experiment
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Introduction

e Oscillation parameters change the rate and shape of the
appearing and disappearing neutrinos
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e Relies on the model prediction in the absence of oscillations
— Constrain this model = constrain your oscillation parameters!

* Finding cross-section effects which are degenerate with
oscillation parameters is the nightmare scenario
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What can go wrong?
e Flavour identification

- |s the increased rate of CCle from oscillations, or is it a poorly
modelled NC17m°® background? Or NC17t* mistaken for CC1u?

— Attribute a cross-section effect of higher ve rate to oscillations =
estimate a larger dcp and sin%613
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What can go wrong?
* Neutrino energy estimation

- Is the frequency of the oscillation due to Am?, or biases in neutrino
energy reconstruction from mismodelling?

295 km, NuFit 5.2

— AmM5,=2.51x10° eV?

—— AmM3,=2.60x10"° eV?
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What can go wrong?
* Rate of appearance and disappearance

- Is the ve rate higher because of a larger value of dcp, or is your
model for ve—v, wrong?

- Is the increased rate of v, due to sin?6.3, or a larger cross section?
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Role of the near detector

Far
detector

Near
detector(s)
. 1,700 m below sea level E .
T ——

Neutrino Beam

Neutrino oscillations
@Q®< %@
 The beam is characterised by high-statistics samples at the near
detector(s) before long baseline oscillations

* Events observed at the far detector have many shared
uncertainties with the near detector

- Constrain flux and interaction model using near detector data
N&p(Z) = 9%(E,) x o%(F)
Ngp(Z) = P(vg — Vo) X @Y(E,) X 0%(X) X

« Mitigates many of the issues, e.g. size of cross sections
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* For atmospheric neutrinos, there is no near detector, but it is

largely addressed by down-going neutrinos

- Very small oscillation probability in region

- Effectively acting as a near-detector constraint throughout a
large neutrino energy range
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Role of external data

In some cases, data from the near detector might not suffice

- e.g. unmagnetised detector, but want NC1mt* cross section to
understand the background in v, disappearance

Or, you might not have a near detector!

External data is often used to estimate the cross section, and prevent
a near-detector analysis from over-constraining the model
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Issues with the near detector

 The v, flux at the FD has a minimum where the v, flux at
the ND has a maximum
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e Oscillated v, flux gives rise to v. signal at the FD

 Intrinsic ve at ND do not have same neutrino energy
spectrum as the ve signal at FD

e Reliance on model for extrapolating in neutrino energy
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Issues with the near detector
* Acceptance differences from different size

- Functionally identical does not mean identical acceptance
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* Different target material and detector design means
additional model dependence in CH—H-,0

* Different detector technologies and geometry may mean
different particle acceptance
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Energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

* Need to understanding mapping between observed
events and the not-observed neutrino energy

What was the
initial sWte ucleon
momentum?

Lk

[ [
o All estimators are biased

- Try to reduce the amount of bias
- Understand the uncertainty on the bias
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Energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

* Need to understanding mapping between observed
events and the not-observed neutrino energy

H%
How often does

nis pion
indergo FSI:

?
\ m
]

|
. [ ﬂ. [
o All estimators are biased

- Try to reduce the amount of bias
- Understand the uncertainty on the bias
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Energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

* Need to understanding mapping between observed
events and the not-observed neutrino energy

7}. —= i _.-"f/
....... ::q B | e
p'% How often is a
What wa How often does neﬂton
initial stz this pion escaping?
momenmum? undergo FSI?
1z 9
5 1S | |

e All estimators areH biased

- Try to reduce the amount of bias
- Understand the uncertainty on the bias
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Energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

* Need to understanding mapping between observed
events and the not-observed neutrino energy

How _a’n particles

...... ::’%ﬂ I nd'missed?
nl o '
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N
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initial SW’ te nucleon this pion 0ing?
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[

e All estimators areH biased

- Try to reduce the amount of bias
- Understand the uncertainty on the bias
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Energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

« NOVA, DUNE and SBN have sampling calorimeters
and often events with multiple tracks

- CC-inclusive selection
- Energy estimator which sums up energy deposits

Clarence Wret 17



Calorimetric energy reconstruction

e Simple simulation result agrees well with NOvVA

official figure: ~11% RMS
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* |[nteraction modes bias differently, e.g. DIS has

multiple missing neutrons and pion FSI
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3 Calorimetric energy reconstruction

* Generally more precise energy estimate than
kinematic method

e Susceptible to missing neutrons and other particles
* Final-state interactions directly bias the estimator

* Relies on correct PID of every track, otherwise risk
bias by rest mass (e.g. mistake proton for pion)

* Will always have bias from initial state motion
- Smaller impact at higher energies, e.g. NOVA and DUNE

e CC-inclusive selection means complex contributions
from multiple interaction modes
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Kinematic energy reconstruction

* Energy reconstruction method is function of
selection and detector technology

« T2K and HK are dominated by CCOm interaction, and
Cherenkov threshold for proton is >1 GeV in H,0

* Single-track events

* Kinematic reconstruction
using only lepton information

 Assumes 4 legged CCQE
interaction, and initial state
nucleon at rest

2myn B — -mf — mi—f — mir

2(my — E; + prcosf, ;)
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« CCQE contribution
largely unbiased

» 20-25% RMS

e CC1mn+FSI and
2p2h contribution
less than 25%o0f

total signal

* When applied to
CC1lrmt sample,
replace m, with ma

J/E]™°] x 10% (cm*nucleon)

True
vV

[(EX=-E

- Works because T2K s

A(1232) dominated

Clarence Wret

Kinematic energy reconstruction
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Kinematic energy reconstruction

* Important to get the CCQE, 2p2h and CCl1n
contributions correct

- They bias the estimator differently: mistaking non-CCQE
for CCQE imposes a bias

* Direct dependence on nuclear initial-state model
- Relatively large contribution at E,=0.6 GeV
* Only dependent on FSI in the absorption

- Proton may lose energy to nucleus; does not matter in
estimator

- Secondary dependence on FSI through missing particles:
think it's four-limbed interaction when it was not

* Small contribution from higher W resonances, SIS
and DIS contributions
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Nurec :2
Nerec -
Nerec Q_

« HK and DUNE will have enough events to be limited
by the ~3% (anti-)ve uncertainty

e Current experiments at the 3-5% level uncertainties™

Clarence Wret *Exception of T2K's single-pion-below-threshold sample (10-15%)  ,3
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Impact of systematics at the FD

Neutrino cross-section uncertainties contribute ~3% to
number of ve on NOVA and T2K

NOVA Preliminary
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M. Elkins, T. Nosek, Neutrino 2020 poster

v-beam NOvVA Preliminary
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https://indico.fnal.gov/event/19348/contributions/186690/attachments/129865/157768/neutrino_systeamtics_poster_final.pdf

Fake-data studies

« Realistically, won’t have a perfect interaction model
for a timely oscillation analysis

 Reasonable best case scenario: a model that fits the
experimental data, but is not applicable to other
experiments

- The model is effective, but not complete

- The physics is not modelled exactly, but approximately,
with effects soaked up in the wrong part of the model

 What if nature is described by a different model;
what bias is incurred on oscillation parameters?

e The bias this may cause is generally mitigated by
“fake-data studies”

* Can change exclusion statements and model choices

Clarence Wret 25



Fake-data studies

 Use an alternative model to make a prediction for near and

far detectors

e Fit to the alternative model at the near detector

- Set of parameters that best describe the alternative model

* Propagate result to
far detector, perform
oscillation analysis

Events
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Atmospheric neutrinos

e Atmospheric neutrinos have sensitivity to mass ordering via 3-10
GeV resonance

pposite effect for neutrino and anti-neutrinos: need to separate

- Contribution from v,=Vvs, where v, enters multi-ring ve sample
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* Ocp sensitivity from ve below 1 GeV = ve/v, important

* Neutrino flavour differences also limiting atmospheric results
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SBN

* For SBN programme and appearance searches,
anything mimicking ve appearance is important

- e.g. NC1ly, NC1n° DIS, NC17° resonant, NC17® coherent

- Many constrained by dedicated measurements and
sidebands
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e vo/Vv, differences from nucleon and nuclear
environment, especially considering “°Ar
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What do | worry about?
Will (anti-)ve uncertainties fall below 2-3%?

— Critical for dcp, mass ordering, for both atmospheric and
accelerator experiments, and MiniBooNE LEE

Do we understand transition, SIS and DIS interactions
sufficiently for DUNE?

— Worry that the day DUNE ND turns on, it'll show how poorly
we describe these samples

Will we understand nuclear effects in 4°Ar nuclear in 10
years time?

Will we understand neutron final-state interactions
sufficiently to use them for e.g. energy estimators and
tagging events?

v: uncertainties for atmospheric neutrinos and mass
ordering sensitivity

* How do we diagnose low momentum pion modelling

Clarence Wret
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Summary

* Neutrino interactions are a central ingredient to the
accelerator and atmospheric neutrino measurements

— Starting to see importance on current-generation
experiments like T2K, NOvVA, SK

- Critical for next-generation experiments HK and DUNE

 Experiments and generator groups are including
latest model developments

 Theory community gaining people and working hard
at developing modelling

- e.g. YAr spectral functions, 2p2h models and
uncertainties, single pion production, sophisticated
nuclear models...

* Very exciting time for the field, and an excellent
week to be in Sao Paolo!
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Neutrino fluxes
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Arbitrary units

Neutrino fluxes

295 km, NuFit 5.2
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https://indico.cern.ch/event/703880/contributions/3159021/attachments/1735451/2806895/2018-10-17_Wolcott_XS_unc_on_NOvA_osc_-_NuInt.pdf
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NOVA

M. Elkins, T. Nosek, Neutrino 2020 poster
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https://indico.fnal.gov/event/19348/contributions/186690/attachments/129865/157768/neutrino_systeamtics_poster_final.pdf
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Atmospheric

Hyper-K's Sensitivity to Scp with Atmospheric neutrinos
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