Impact of neutrino interaction uncertainties on <u>rak</u> physics measurements

Laura Munteanu on behalf of the T2K experiment NuInt 2024, São Paulo, Brazil 15 April 2024

The T2K Experiment

Far detector: Super-Kamiokande

 $\stackrel{\Phi_{\nu}(A.U.)}{=} 1$

Near detector complex

T2K physics program

Neutrino oscillations

Neutrino cross-sections

THE EUROPEAN Eur. Phys. J. C (2023) 83:782 https://doi.org/10.1140/epjc/s10052-023-11819-x **PHYSICAL JOURNAL C** Regular Article - Experimental Physics Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×10^{21} protons on target **T2K** Collaboration UAI Magne ND280 PODECal INGRID WAGASCI BabyMIND VAGASCI + BODYN INGRID $E_{u}^{peak} \sim 1.1 \ GeV$

Eur. Phys. J. C 83, 782 (2023)

Exotic searches

See talks by S. Dolan C. Jesús-Valls

Latest oscillation results

Laura Munteanu - NuInt 2024, São Paulo, Brazil

 Oscillation parameters are inferred from event spectra as a function of reconstructed neutrino energy

Constrain systematics with near detector

 But heavily rely on models to predict near-to-far detector extrapolation and neutrino energy smearing

Oscillated neutrino event rates as a function of neutrino energy measured with SK – water Cherenkov detector

Infer neutrino energy using lepton information under 2-body reaction assumption 15.04.2024

e-like

Need to control: (1st order)

- Shape of Fermi motion
- Proportion of **QE vs non-QE** processes
- Physics beyond PWIA
- **Energy dependence** of the cross-section (due to oscillations)
- A-scaling (C and O)

Laura Munteanu - NuInt 2024, São Paulo, Brazil

Oscillated neutrino event rates as a function of neutrino energy measured with SK – water Cherenkov detector

Infer neutrino energy using **lepton information** under 2-body reaction assumption 15.04.2024

Laura Munteanu - NuInt 2024, São Paulo, Brazil

Need to control: (1st order)

- Shape of Fermi motion
- Proportion of QE vs non-QE processes
- Physics beyond PWIA
- Energy dependence of the cross-section (due to oscillations)
- A-scaling (C and O)

Oscillated neutrino event rates as a function of neutrino energy measured with SK – water Cherenkov detector

Infer neutrino energy using **lepton information** under 2-body reaction assumption 15.04.2024

Laura Munteanu - NuInt 2024, São Paulo, Brazil

Need to control: (1st order)

- Shape of Fermi motion
- Proportion of QE vs non-QE processes
- Physics beyond PWIA
- Energy dependence of the cross-section (due to oscillations)
- A-scaling (C and O)

Constraining uncertainties with near detector data

- 22 near detector samples
- 4000+ bins in $(p_{\mu}, cos\theta_{\mu})$
- ~700 parameters (~70 for cross-section uncertainties)

Example: CC0 π 0p sample

NC Inclusive

.....

CC Inclusive

Baseline model and simulation

T2K uses the NEUT neutrino event generator

Laura Munteanu - NuInt 2024, São Paulo, Brazil

CCQE uncertainties – intrinsic degrees of freedom

T2K is the first neutrino oscillation experiment to use a non-Fermi gas model

- ✓ Tuned to ee'p data
- More powerful at predicting hadron kinematics than other available models
- Possibility to vary physically meaningful degrees of freedom

CCQE uncertainties – intrinsic degrees of freedom

T2K is the first neutrino oscillation experiment to use a non-Fermi gas model

- Tuned to ee'p data \checkmark
- More powerful at predicting hadron \checkmark kinematics than other available models
- Possibility to vary physically meaningful \checkmark degrees of freedom

12

CCQE uncertainties – intrinsic degrees of freedom

T2K is the first neutrino oscillation experiment to use a non-Fermi gas model

- ✓ Tuned to ee'p data
- More powerful at predicting hadron kinematics than other available models
- Possibility to vary physically meaningful degrees of freedom

- X Relies on factorization approach
- X Does not include FSI effects on the lepton
- X Simplistic description of Pauli blocking

 $*E_m, p_m$ – missing energy and momentum

Current near detector fit is performed as a function of **lepton kinematics only** \rightarrow Include **effective** d.o.f. which alter the shape of lepton kinematic distributions

Current near detector fit is performed as a function of **lepton kinematics only** \rightarrow Include **effective** d.o.f. which alter the shape of lepton kinematic distributions

Target low- ω region (~15% of CCQE events) where effects beyond PWIA are important

PWIA: Plane Wave Impulse Approximation

Current near detector fit is performed as a function of **lepton kinematics only** \rightarrow Include **effective** d.o.f. which alter the shape of lepton kinematic distributions

Account for uncertainties in shell positions Previously dominant source of systematic uncertainty on Δm_{32}^2 (now subdominant thanks to use of SF model and *ee'p* constraints)

Current near detector fit is performed as a function of **lepton kinematics only** \rightarrow Include **effective** d.o.f. which alter the shape of lepton kinematic distributions +Effective Q^2 shape freedom for deviations from dipole M_A prediction

Will need revisiting once we include hadron kinematics in the ND analysis

2p2h uncertainties

- Dominant non-QE contrib. in CC0 π samples
- Simulated using Nieves et al. 2p2h model
- Freedoms include:
 - Normalization
 - Shape (Δ vs non-Δ components)
 - nn vs np pair fractions
 - Energy dependence of different models
- Lacking freedom in nucleon kinematics
 - Not very impactful for current analyses
 - But will become critical in future analyses

Impact of varying the fraction of 2p2h nn and np initial states

Pion production uncertainties

- Baseline model: Rein-Sehgal + Graczyk-Sobczyk form factors
- Dominated by Δ resonance, but 17 resonances + interferences included
- Non-resonant pion production but no interference with resonant production
- Parameters which control:
 - Form factors $(M_{RES}^A \text{ and } C_5^A)$ newly tuned
 - Non-resonant contributions
 - Removal energy in π -production events
 - Resonance decay kinematics

Impact of varying the removal energy for π -production events

Final State Interactions

- Salcedo-Oset intra-nuclear cascade
 - 6 meson FSI parameters tuned to π-C and π-O scattering data Phys. Rev. D 99, 052007
- Simple parameter to control probability of proton FSI

Robustness studies

Our uncertainty model is not complete due to \rightarrow unknown unknowns

- \rightarrow lack of theoretical guidance
- \rightarrow lack of tools/challenges in propagating some effects

We test the robustness of our analysis by assessing its performance against alternative models or tunes

Examples: (non-exhaustive, 16 total tests)

- 1. Alternative CCQE models (LFG, CRPA)
- 2. Varying the proportion of non-QE events
- 3. Alternative π -production models (e.g. Martini 1π)
- 4. Hard photon emission

Principle:

Robustness studies

All robustness checks show deviations which are far below the *total* uncertainty Ο on oscillation parameters

But notable cases where sizable deviations were seen:

- 1. **CRPA** alternative model shows a bias comparable to the size of the total systematic uncertainty on Δm_{32}^2
- 2. Attributing the data-MC discrepancy to **non-QE** events only shows a bias of ~70% of the systematic uncertainty on Δm_{32}^2

Accounted for by applying an additional smearing to Δm_{32}^2

This smearing is the dominant systematic uncertainty on Δm_{32}^2

Highlights aspects of the model which need improvement

Robustness studies

• All robustness checks show deviations which are far below the *total* uncertainty on oscillation parameters

But notable cases where sizable deviations were seen:

Lessons learned – towards the next analysis

- Low-ω physics (RPA, optical potential, Pauli blocking...) are the dominat source of systematic uncertainty on atmos. parameters for T2K (and T2K+SK atmospheric) oscillation analyses
 - Currently developing new freedoms to target these effects
- Lacking freedom in nucleon kinematics
 - Ok for now but unacceptable once we include hadron kinematics in the analysis
 - Next analysis will include freedom to control SRC pair fractions & cascade nucleon FSI
 - Ongoing work to even better describe nucleon FSI
- Emission of radiative photons now simulated in NEUT for next analysis

15.04.2024

Laura Munteanu - NuInt 2024, São Paulo, Brazil

Additional future improvements

- Ongoing (very promising!) implementation of ED-RMF model in NEUT
 - Opens up the possibility of physically motivated uncertainties relatable to a fully microscopic model
- Addition of new freedoms for hadron kinematics in 2p2h processes
 - E.g. inclusion of MicroBooNE-inspired decay angle freedom for 2p2h events
- Wider phase space of robustness studies
 - 2p2h alternative models
 - Pion multiplicities
- ...and many more!

Benchmarking with cross-section measurements

The T2K uncertainty model has enough freedom to describe T2K inclusive and some semi-inclusive measurements *Fits performed using*

Benchmarking with cross-section measurements

The T2K uncertainty model has enough freedom to describe T2K inclusive and some semi-inclusive measurements *Fits performed using*

...improves agreement with MINERvA measurements but doesn't describe it quantitatively

Possible lacking freedoms:

- Energy dependence
- Hadron kinematics
- Nucleon FSI
- Resonant pion production

Summary & prospects

- T2K has developed a sophisticated neutrino interaction uncertainty model for its oscillation analyses
- ~70 d.o.f. for relevant effects
- Robustness of the model is assessed through dedicated studies
 - Dominant source of systematic uncertainty on atmos. parameters currently related to beyond-PWIA effects
 - Help identify shortcomings of the model which we are currently addressing
- Iterative work currently done in preparation for the first data with the new Upgraded ND280
 - Will open up a world of possibilities for new and robust measurements
 - Needs dedicated, new uncertainties for including hadronic observables in the oscillation analysis

See talk by U. Virginet

Summary & prospects

- T2K has developed a sophisticated neutrino interaction uncertainty model for its oscillation analyses
- ~70 d.o.f. for relevant effects
- Robustness of the model is assessed through dedicated studies

f systematic uncertainty on atmos. Iv related to beyond-PWIA effects

mings of the model which we are currently

Key challenges:

- C/O correlations
- Nucleon kinematics in 2p2h interactions
- Nuclear effects in pion production processes

observables in the oscillation analysis

See talk by U. Virginet

Iter

data t

Will oper

Needs de

measurer

Supplementary material

Impact of ND constraint on FD spectra and errors

Number of Evens	^μ μ ²⁵ μ ²⁶ μ ²⁶ μ ²⁶ μ ²⁶ μ ²⁷ μ ²⁷ Pre-ND Post-ND				¹⁰⁰ ¹⁰ ¹				
actore	1R		MR	1Re					
Error sou	rce (units: %)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC	
Flux		5.0	4.6	5.2	4.9	4.6	5.1	4.5	
Cross-sec	Cross-section (all)		13.6	10.6	16.3	13.1	14.7	10.5	
SK+SI+I	PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3	
Total Al		16.7	14.6	12.5	17.3	14.4	20.9	11.6	

T2K Run 1-10, preliminary

Laura Munteanu - NuInt 2024, São Paulo, Brazil

Impact of ND constraint on FD spectra and errors

	\mathcal{W}_{H}^{u}			ND 10 ND 8 6 4 1 1 1 1 1 1 1 0 0 0	^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy} ^{vy}				
pefore		1	R	MR			$1 \mathrm{R} e$		
Ber	Error source (units: $\%$)	FHC	RHC	FHC CC1 π^+	FHC	RHC	FHC CC1 π^+	FHC/RHC	
	Flux	5.0	4.6	5.2	4.9	4.6	5.1	4.5	
	Cross-section (all)	15.8	13.6	10.6	16.3	13.1	14.7	10.5	
	SK+SI+PN	2.6	2.2	4.0	3.1	3.9	13.6	1.3	
	Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6	

T2K Run 1-10, preliminary

Impact of ND constraint on FD spectra and errors

15.04.2024

Laura Munteanu - NuInt 2024, São Paulo, Brazil

T2K Run 1-10, preliminary

15.04.2024

Laura Munteanu - NuInt 2024, São Paulo, Brazil

T2K Run 1-10, preliminary