NOvA and neutrino interaction uncertainties

on behalf of the NOvA collaboration

April 15, 2024 NuInt 2024 Mike Dolce

Wichita State University

NOvA Experiment

- NuMI Off-axis ν_e Appearance experiment, located at Fermilab.
- Broad physics program:
 - oscillations (e.g. Δm_{32}^2 , $\sin^2 \theta_{23}$, and δ_{CP}).
 - cross sections (e.g. in Q^2 , E_{ν} , E_{avail} , $|\vec{q}|$).
 - non-standard interactions (e.g. $\epsilon_{e\mu}, \epsilon_{e\tau}$).
 - "exotics" (e.g. slow monopoles, seasonal muons, supernova neutrinos).

NOvA Experiment

beam axis

MN

Far Detector

MI

Near

IL

Detector

- NuMI Off-axis ν_e Appearance experiment, located at Fermilab.
- Broad physics program:
 - oscillations (e.g. Δm_{32}^2 , $\sin^2 \theta_{23}$, and δ_{CP}).
 - cross sections (e.g. in Q^2 , E_{ν} , E_{avail}
 - non-standard interactions (e.g. eep
 - "exotics" (e.g. slow monopoles, seasona muons, supernova neutrinos).
- **Goal**: Discuss the spirit of how NOvA addresses uncertainties in two broad categories:
- Data-driven analyses:
 - oscillations, extrapolation.
- Model-spread analyses:
 - cross section, 2p2h component.

 \vec{q}

NuMI Beamline

- ▶ NuMI record of 950 kW in 2023.
- ~ Several million interactions in Near Detector (ND).
- ~ Several hundred in Far Detector (FD).
- $\langle E_{\nu} \rangle$ ~ 2 GeV.

Nulnt 2024

NOvA Experiment

- Functionally equivalent detectors.
- PVC cells filled with liquid scintillator, arranged orthogonally for stereographic image.

NOvA Cell

Far Detector

Near Detector

Percentage of mass

5

11

 NOvA observes various neutrino interaction

 $\mathcal{N} \cap \mathcal{V} \wedge$

- NOvA observes various neutrino interaction processes.
- Has a custom configuration of models.

* custom tuning

Process	Abbreviation	Model	Reference
Quasielastic	QE	Valencia 1p1h	J. Nieves, J. E. Amaro, M. Valverde, Phys. Rev. C
QE Form Factor	_	Z-expansion	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys.
Multi-nucleon	2p2h	Valencia 2p2h*	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas,
Resonance	RES	Berger-Seghal	Ch. Berger, L. M. Sehgal, Phys. Rev. D 76 (2007)
Deep Inelastic	DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA
Final State Interactions	FSI	hN semi-classical*	S. Dytman, Acta Physica Polonica B 40 (2009)

- NOvA observes various neutrino interaction processes.
- Has a custom configuration of models.

- In-house tuning of FSI and 2p2h models.
- Focus on 2p2h and its uncertainty treatment.
- Elsewhere, we rely on **GENIE** uncertainties.

* custom tuning

Process	Abbreviation	Model	Reference
Quasielastic	QE	Valencia 1p1h	J. Nieves, J. E. Amaro, M. Valverde, Phys. Rev. C
QE Form Factor	_	Z-expansion	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys.
Multi-nucleon	2p2h	Valencia 2p2h*	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas,
Resonance	RES	Berger-Seghal	Ch. Berger, L. M. Sehgal, Phys. Rev. D 76 (2007)
Deep Inelastic	DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA
Final State Interactions	FSI	hN semi-classical*	S. Dytman, Acta Physica Polonica B 40 (2009)

NOvA 2p2h tune

Raw Valencia 2p2h model is insufficient with NOvA ND data.

NOvA 2p2h tune

• Tune a double-Gaussian distribution in true ($|\vec{q}|, q_0$) space to agree with ND data — "NOvA 2p2h tune".

NOvA 2p2h tune

• Tune a double-Gaussian distribution in true ($|\vec{q}|, q_0$) space to agree with ND data — "NOvA 2p2h tune".

- We want to have systematic freedom to account for disagreement in other channels.
- We bracket our tune with two predictions: "QE-like" & "RES-like" *.

- We want to have systematic freedom to account for disagreement in other channels.
- ▶ We bracket our tune with two predictions: "QE-like" & "RES-like" *.

NOvA Preliminary

- **QE**-dominated prediction.
- ▶ Re-tune 2p2h (prev. slide) to agree with data.
- ‣ This is our "QE-like" uncertainty on 2p2h.

Units of σ OE-like RES-like

-1

	Z-expansion CCQE				
	Z-expansion coefficients				
	CCQE RPA suppression				
our only other MEC	CCQE RPA enhancement				
	RES M _v				
	RES MA				
	RES low-Q ² suppression:				
KUP.					

Systematic

- We want to have systematic freedom to account for disagreement in other channels.
- ▶ We bracket our tune with two predictions: "QE-like" & "RES-like" *.

- **QE RES**-dominated prediction.
- Re-tune 2p2h (prev. slide) to agree with data.
 - This is our "QE RESlike" uncertainty on 2p2h.

10 ⁴ Events	Neutrino $v_{\mu} + \overline{v}_{\mu} C$ RES Lil	o Beam C selection ke simu			QE RES DIS Other Nominal	
Ю	0.1	0.2	0.3	0.4	0.5	0.6
		Reco E	- bod via	(GeV)		

	Units	of σ
Systematic	QE-like	RES-like
Z-expansion CCQE	1	-1
Z-expansion coefficients	1	-1
CCQE RPA suppression	1	-1
CCQE RPA enhancement	1	-1
RES M _v	-1	1
RES M _A	-1	1
RES low-Q ² suppression:	1	-1

* NOT our only treatment. other MEC uncertainties in backup.

NOvA Preliminary

Reco E_{had, vis} (GeV)

Neutrino Beam

10⁴ Events

 v_{μ} + \overline{v}_{μ} CC selection

Default Genie

NOvA Preliminary

MEC

QE

RES

DIS Other

- We want to have systematic freedom to account for disagreement in other channels.
- We bracket our tune with two predictions: "QE-like" & "RES-like" *.

	Units	of σ
Systematic	QE-like	RES-like
Z-expansion CCQE	1	-1
Z-expansion coefficients	1	-1
CCQE RPA suppression	1	-1
CCQE RPA enhancement	1	-1
RES M _v	-1	1
RES MA	-1	1
RES low-Q ² suppression:	1	-1

* NOT our only treatment, other MEC uncertainties in backup. NOvA Preliminary

MEC

QE

RES DIS

Other

Neutrino Beam

Events

04

v_+v_ CC selection

Default Geni

Reco E_{had. vis} (GeV)

Oscillation analysis

- NOvA can maximize the information from both detectors.
- A data-driven approach:
 - 1. adjust the ND prediction to agree with data.
 - 2. "extrapolate" the modified ND prediction to create FD predictions.
- Extrapolation helps correct for effects we understand e.g. detector, geometry, beam divergence.

18

- NOvA can maximize the information from both detectors.
- A data-driven approach:
 - 1. adjust the ND prediction to agree with data.
 - 2. "extrapolate" the modified ND prediction to create FD predictions.
- Extrapolation helps correct for effects we understand e.g. detector, geometry, beam divergence.

Extrapolation

Extrapolation

Extrapolation

Extrapolation

Extrapolation

Impact of extrapolation

- Impact of extrapolation on NOvA's ν_{μ} and ν_{e} predictions.
- Extrapolation reduces impact of cross section uncertainties.
- Interaction uncertainties are not the leading contributor to uncertainty budget.

Impact of extrapolation

- Impact of extrapolation on NOvA's ν_{μ} and ν_{e} predictions.
- Extrapolation reduces impact of cross section uncertainties.
- Interaction uncertainties are not the leading contributor to uncertainty budget.

- These analyses cannot use two detectors to extrapolate and mitigate interaction uncertainties.
- Some analyses cannot use "QE-like" and "RES-like" uncertainties.
- An example that cannot use either:
 - + ν_{μ} CC Low E_{had} analysis.
 - Risk: using ND data to tune 2p2h and then measure the same process.
 - Opt for a model spread uncertainty.

Model spread analyses

$ u_{\mu}$ CC Low- E_{had}		Two slices of θ_{μ}
$\begin{aligned} \mathbf{Select: 1 track} \\ T_p &\leq 250 \text{MeV} \\ T_\pi &\leq 175 \text{MeV} \end{aligned}$	Similar NOvA 2p2h approach, different model: Empirical MEC.	NOVA Proliminary
Neutrino interactions are simulated using GENIE 2.1ISIQEMECResDISRFGL-SEmpiricalR-SB-Y	12.2 FSI hA 0.91 < 0 0.91 <	OSθ _μ < 0.94 — Data (Stat.+Syst.) — GENIE 2.12.2 NOvA-tune w / Empirical MEC
• Double differential crossection in muon kinematics: $\cos \theta_{\mu}$, T_{μ} .	DSS 9^{20} (cm ² /GeV	Lactional unc
 MC uses NOvA 2p2h 	tune.	Muon kinetic energy (GeV) $OS\theta_{\mu} < 0.98$ NOvA Preliminary a (Stat.+Syst.) VIE 2.12.2 NOvA-tune Empirical MEC $OSB_{\mu} < 0.98$ OVA Preliminary $OSB_{\mu} < 0.98$ OVA Preliminary OVA Prelim

1		m				
Diff		I				
	Simil	Similar N 2p2h appr				
$T_p \leq 250$ MeV					2p2h a	
	Empiri	ical				
Neutrino interactions are simulated using GENIE 2.12.2						
ISI	QE	MEC	Res	DIS	FSI	
RFG	L-S	Empirical	R-S	B-Y	hA	

- Double differential cross section in muon kinematics: $\cos \theta_{\mu}$, T_{μ} .
- MC uses NOvA 2p2h tune.
- 2p2h model spread, ~2% difference:
 - MINERvA tune (Valencia) and SuSA-v2.

$ u_{\mu}$ CC Low- E_{had} Differential T_{μ} and $\cos \theta_{\mu}$					
select: 1 track					
$T_p \leq 250$	MeV				
$T_{\pi} \leq 175$	MeV				

Neutrino interactions are simulated using GENIE 2.12.2					
ISI	QE	MEC	Res	DIS	FSI
RFG	L-S	Empirical	R-S	B-Y	hA

- Double differential cross section in muon kinematics: $\cos \theta_{\mu}$, T_{μ} .
- MC uses NOvA 2p2h tune.
- 2p2h model spread, ~2% difference:
 - MINERvA tune
 (Valencia) and SuSA-v2.

Summary

- NOvA has a broad physics program with different uncertainty treatment.
- NOvA uses most GENIE uncertainties provided.
- Special cases:
 - in-house ($|\vec{q}_3|$, q_0) **2p2h tune** to its ND data and QE/RES-like uncertainties.
 - · in-house **hN FSI tune** to external π -C scattering data and uncertainties.
- Thanks to analysis design, interaction uncertainties are controlled for oscillation and cross section analyses.

Oscillation analysis

- ND data-driven extrapolation reduces cross section uncertainties.
- Uses 2p2h "QE/RES-like" uncertainty from ND data tune.

Cross section analysis

- Analyses cannot use extrapolation.
- Some cases opt for 2p2h model spread (Low E_{had}).

Nulnt 2024

Future plans

- NOvA still is actively seeking to improve its modeling and interaction uncertainties.
- Future synergy with DUNE anticipated, with aligned GENIE modeling choices.

Two Detectors

- Have begun work on two-detector fits — a model driven approach.
 - Have developed new degrees of freedom from these efforts.

Near Detector

- Efforts to address:
 - pion-related degrees of freedom.
 - resonance contributions.
- Continue to incorporate future 2p2h advancements from the community.

Thank you

Backup

NOvA Experiment

- Most analyses use a Convolutional Neural Network (CNN):
 - CNN for event ID "3flavor".
 - CNN for particle ID cross sections.
 - CNN for hadronic vs. electromagnetic separation.

Nulnt 2024

NOvA Experiment

Characteristics of events in NOvA detectors.

Flux Uncertainties

- Right, fractional uncertainty from hadronic analysis.
- Bottom, hadron production uncertainties, some of the leading uncertainties.

 Opportunity to study oscillation parameters (FD) and interactions from these processes (ND).

hN FSI and external data

GENIE 3.0.6

hN FSI tune

- Adjust the "fate fractions" of FSI processes.
- Tune to extant pion scattering data on C-12.
- Biggest change is to Mean Free Path and Absorption.

NOvA FSI Tune

MFP	Abs	СХ	QE
0.6	1.4	0.7	0.9

Parameter	Scale factor name	Physics origin	Note
Mean free path (MFP)	$f_{ m MFP}$	$ ho(ec{r}),\sigma_{ m REAC}$	The mean distance traveled by pions before they undergo an interaction.
Fraction of ABS	$f_{ m ABS}$	$rac{\sigma_{ABS}}{\sigma_{ m REAC}}$	The fraction of pion interactions experiencing an absorption.
Fraction of CX	$f_{ m CX}$	$\frac{\sigma_{CX}}{\sigma_{ m REAC}}$	The fraction of pion interactions experiencing charge exchange.
Fraction of QE	$f_{ m QE}$	$rac{\sigma_{QE}}{\sigma_{ ext{REAC}}}$	The fraction of pion interactions experiencing quasi-elastic scatters.

GENIE 3.0.6

* custom tuning

Process	Model	Reference
Final State Interactions	hN semi-classical*	S. Dytman, Acta Physica Polonica B 40 (2009)

hN FSI tune

NOvA FSI Tune

GENIE 3.0.6

MFP Abs CX QE 0.6 1.4 0.7 0.9

NOvA Preliminary

- NOvA utilizes the covariance matrix from T2K, tuned on external data, to create uncertainties.
- · Create a correlation matrix from their parameters, diagonalize the matrix, construct eigenvectors.
 - Use bottom left 3x3 block.
- Produce three eigenvalue/eigenvector linear combinations of the FSI processes.
- Fourth uncertainty of ±0.2 adjustment of MFP.

 [7] E. S. Pinzon Guerra et al. Using world charged π[±]-nucleus scattering data to constrain an intranuclear cascade model. *Phys. Rev.*, D99(5):052007, 2019.

NOvA's FSI Uncertainties

$$\begin{bmatrix} f_{\rm ABS}^1 \\ f_{\rm CX}^1 \\ f_{\rm QE}^1 \end{bmatrix} = \sqrt{\lambda_1} \vec{v}_1$$

Knob	shift (σ)	$f_{ m MFP}$	$f_{ m ABS}$	f_{CX}	$f_{ m QE}$
Esta fraction #1	+1	0.6	0.9	0.8	1.0
Fate fraction $\#1$	-1	0.6	1.8	0.6	0.8
Esta fraction 42	+1	0.6	1.4	0.9	0.7
rate fraction $\#2$	-1	0.6	1.4	0.5	1.2
Fata fraction #3	+1	0.6	1.3	0.5	0.8
Fate fraction $\#3$	-1	0.6	1.4	0.9	1.0
Moon free noth	+1	0.8	1.4	0.7	0.9
mean nee path	-1	0.4	1.4	0.7	0.9

NOvA Preliminary

Knob	shift (σ)	$f_{ m MFP}$	$f_{\rm ABS}$	$f_{\rm CX}$	$f_{ m QE}$
Eato fraction //1	+1	0.6	0.9	0.8	1.0
Fate fraction $\#1$	-1	0.6	1.8	0.6	0.8
Fata fraction #2	+1	0.6	1.4	0.9	0.7
Fate fraction $\#2$	-1	0.6	1.4	0.5	1.2
Fata fraction #3	+1	0.6	1.3	0.5	0.8
Fate fraction $\#3$	-1	0.6	1.4	0.9	1.0
Moon free noth	+1	0.8	1.4	0.7	0.9
mean nee path	-1	0.4	1.4	0.7	0.9

total systematic uncertainty

2

- Impact on neutrino oscillation-related observables.
- Largest impact is in ~ 200 MeV range.
- MFP uncertainty is a leading uncertainty in oscillation analysis.

46

NOvA Oscillations

Three main questions:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\Delta m_{21}^2} \Delta m_{22}^2$$

$$2$$

$$C_{ij} \rightarrow \operatorname{cos}(\theta_{ij})$$

$$s_{ij} \rightarrow \operatorname{sin}(\theta_{ij})$$
Normal Hierarchy
Inverted Hierarchy
Inverted

Appearance Probability

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin 2\theta_{13} \frac{\sin^{2} \Delta (1 - A)}{(1 - A)^{2}} + \alpha J \cos(\Delta \pm \delta_{CP}) \frac{\sin \Delta A}{A} \frac{\sin \Delta (1 - A)}{(1 - A)}$$
Survival Probability

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^{2} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E_{\nu}}\right) + \mathcal{O}(\alpha, \sin^{2} \theta_{13})$$

$$\Delta \equiv \Delta m_{13}^{2} L/4E_{\nu}$$

$$\Delta m_{32}^{2} = m_{3}^{2} - m_{2}^{2}$$
Advised of Δm_{32}

- mass ordering of eigenstates?
- Sensitive to Disappearance, $P(\nu_{\mu} \rightarrow \nu_{\mu}): \theta_{23} \text{ and } \Delta m_{32}^2.$
- value of θ_{23} an underlying symmetry of ν_{μ} and ν_{τ} ?
- δ_{CP} , matter vs. antimatter asymmetry in lepton sector?

ND Quantile distributions

 In Near Detector, we divide the ν_μ distributions into 4 quartiles based on hadronic energy contribution.

Cross section uncertainty in ND

• $\pm 1\sigma$ error budget of NOvA's cross section uncertainties in Near Detector.

NOvA 2024 MC

±1σ xsec24

Prod5.1 Data

Reco E, (GeV)

ND

Neutrino Beam

Quantile 3

 ν_{μ}

10⁶ Events / GeV 5 9 8

0.2

NOVA MC

0

2p2h Uncertainty in NOvA

Systematic	QE-like	RES-like
Z-expansion CCQE	1	-1
Z-expansion coefficients	1	-1
CCQE RPA suppression	1	-1
CCQE RPA enhancement	1	-1
RES M _v	-1	1
RES M _A	-1	1
RES low-Q ² suppression:	1	-1

$$\frac{np}{np+pp} = 0.66 \begin{cases} +0.15\sigma\\ -0.05\sigma \end{cases}$$
$$\frac{np}{mp} = 0.69 \begin{cases} +0.15\sigma\\ -0.05\sigma \end{cases}$$

$$\frac{np}{np+nn} = 0.69 \begin{cases} +0.15\sigma\\ -0.05\sigma \end{cases}$$

- Our FD prediction is more than just a "simple prediction.
- Includes several important components...

- Left, our remaining uncertainty after extrapolated ND prediction.
- Right, different FD predictions, extrapolated and un-extrapolated.

- Left, our remaining uncertainty after extrapolated ND prediction.
- Right, different FD predictions, extrapolated and un-extrapolated.

NOvA "3flavor" and extrapolation

- Systematic uncertainties are ν_{μ} disappearance: Δm_{32}^2 , δ_{CP} & $\sin^2 \theta_{23}$.
- Extrapolation reduces impact of cross section uncertainties.
- Also reduces strain on NOvA's prediction generation.

- Also reduces the covariances between parameters as well.
- One of note calibration systematic and Δm_{32}^2 .
 - "Horizontal", energybased systematic, expected to impact this parameter.

42

NOvA — T2K

Cross Section Model	 As the underlying physics is fundamentally 	Impact of correlations is negligible
	the same, we expect correlations	on the results at the current
	 Different neutrino interaction models 	 statistical significance.
	 optimized for different energy ranges Systematics are designed for individual 	Merits continued investigations for
	models and analysis strategies	higher data exposures.

Cross-section: Impact of alternate models

- Evaluate the robustness of the fit against various alternate models
- Generated simulated fake data using reweighting to alternate models for both the near and far detector, then analyze the credible intervals of the full joint-fit
- Pre-decided thresholds for bias:
 - Change in the width of the 1D intervals <10%</p>
 - Change in central value < 50% of systematic uncertainty
- Example: Suppression in single pion channel based on tune to the MINERvA data*

Joint Analysis Results

64

NOvA — T2K

Global Comparisons - Δm_{32}^2

Joint Analysis Results

measurements.

Cross sections

NOvA has several cross sections analyses.

 ν_e CC inclusive

Differential

 E_e and $\cos \theta_e$

- More are in the works!
- Look at an example.

 ν_{μ} CC Low- E_{had} Differential p_{μ} and $\cos \theta_{\mu}$ Fermilab Wine + Cheese Feb. 2024 **Triple Differential** ν_{μ} CC $|\vec{q}|$ - E_{avail} u_{μ} CC **Differential** E_{avail} , $\cos \theta_{\mu}$, T_{μ} $|\vec{q}|$ and E_{avail} Fermilab Wine + Cheese Fermilab Wine + Cheese Apr. 2024 Feb. 2024 ν_{μ} CC inclusive $u_{\mu} \operatorname{CC} \pi^{0}$ **Single Differential Differential** p_{μ} , $\cos \theta_{\mu}$, p_{π} , $\cos \theta_{\pi}$, p_{μ} and $\cos \theta_{\mu}$ Q^2 , W

2p2h focused analyses

Fermilab Wine + Cheese Feb. 2024

$$\nu_{\mu} \operatorname{CC} |\vec{q}| \text{-} E_{avail}$$

Differential $|\vec{q}|$ and E_{avail}

Neutrino interactions are simulated using GENIE 2.12.2							
ISI QE MEC Res DIS FSI							
RFG	L-S	Empirical	R-S	B-Y	hA		

Same NOvA 2p2h tune procedure, different model: Empirical MEC.

Single detector analyses

Res

R-S

DIS

B-Y

Neutrino interactions are simulated using GENIE 2.12.2

MEC

Empirical

NOvA Preliminary

 Measure the cross section with other
 2p2h models.

ISI

RFG

QE

L-S

- GiBUU is most discrepant in this analysis.
- SuSA-v2 and Valencia produce a similar result.

FSI

hA

Single detector analyses

Nulnt 2024

MEC uncertainty

- Sterile analysis has special treatment for CC MEC:
 - Normalization systematic:
 - 100% on Valencia prediction.
 - Shape systematic:
 - Generated from NOvA tune reliant on NOvA data.
 - Use model spread.
 - 1000 random universes of SuSA and Dytman weighted by Valencia in (q₃,q₀) space.
 - Correlation matrix made and PCA —
 2 principal components used.
 - Bottom, error budget from the analysis.

Neutron Response

- We correct the data-MC disagreement in neutron-enhanced samples.
- Use this correction as the uncertainty.
 - Geant suggests over-production of photons at low prong energy.
 - Hope to improve this with more physics driven modeling.

Two-detector fits in NOvA

- This approach has received attention recently.
- Investigated NOvA ND data and MC with new scrutiny.
- Has initiated development of new degrees of freedom.
- An area NOvA intends to pursue in future.

Constraining neutrino oscillation and interaction parameters with the NOvA Near Detector and Far Detector data using Markov Chain Monte Carlo A dissertation submitted by <u>Michael Dolce</u> in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

A new RES systematic

- Adjust the
 relative νp / νn
 RES cross section.
- Attempt to address RES/DIS interactions especially those with pions.

A new DIS systematic

- In GENIE, a ν CC DIS, with final state Q=+1,0, and multiplicity=2 has fixed probabilities:
 - ▶ proton = 1/3.
 - neutron = 2/3.
- Associated with isospin amplitudes.
- Allow flexibility in the final states → topology.

NOvA cross section uncertainties

_ _ _ _ _ _ _ _ _ _ _ _

QE	<pre>************************************</pre>	DIS	DISvpCC DISvpCC DISvpCC DISvpNC DISvpNC DISvpNC DISvnCC DISvnCC DISvnCC DISvnCC DISvnCC DISvnCC DISvnCC DISvnNC DISvnNC DISvnNC DISvnNC DISvbar DISvbar DISvbar	<pre>0p1_2020 1pi_2020 2pi_2020 0pi_2020 1pi_2020 2pi_2020 3pi_2020 0pi_2020 1pi_2020 2pi_2020 2pi_2020 0pi_2020 1pi_2020 2pi_2020 pi_2020 pCC0pi_2020 pCC0pi_2020 pCC1pi_2020 pCC2pi_2020 pCC2pi_2020</pre>	DISvbarpNC0pi_2020 DISvbarpNC1pi_2020 DISvbarpNC2pi_2020 DISvbarpNC3pi_2020 DISvbarnCC0pi_2020 DISvbarnCC1pi_2020 DISvbarnCC2pi_2020 DISvbarnNC0pi_2020 DISvbarnNC1pi_2020 DISvbarnNC2pi_2020 DISvbarnNC3pi_2020 DISvbarnNC3pi_2020 DISvbarnNC3pi_2020 DISNuHadronQ1Syst DISNuBarHadronQ0Syst FormZone2020GSF AhtBY BhtBY CV1uBY CV2uBY	Other	radcorrnue radcorrnuebar 2ndclasscurr MaNCEL EtaNCEL COHCCScale2018 COHNCScale2018 AGKYxF1pi AGKYpT1pi
MEC	MECShape2020GSFNu MECShape2020GSFAntiNu MECEnuShape2020Nu MECEnuShape2020AntiNu MECInitStateNPFrac2020Nu MECInitStateNPFrac2020Anti	Nu	FSI	hNFSI_FateF hNFSI_FateF hNFSI_FateF hNFSI_MFP_2	racEV1_2020GSF racEV2_2020GSF racEV3_2020GSF 020GSF		