

The Impact of Neutrino Interaction Uncertainties on MicroBooNE and SBN Physics Measurements

London Cooper-Troendle (University of Pittsburgh)

On behalf of the MicroBooNE Collaboration

April 15th, 2024

lcoopert@proton.me

It's an Exciting Time for Neutrino Physics

- MicroBooNE is a well established experiment with 65 published papers since 2017
 - Produced e-like and γ -like low energy excess searches
 - Cross section measurements on a diverse range of interactions and in multiple dimensions
- SBN is ramping up to provide a 2-detector oscillation search and even higher statistics
 - DUNE is on the horizon with even more precise requirements
 - Neutrino interaction modeling is a potential leading source of uncertainty

NOvA Uncertainties Breakdown

Challenges in Neutrino Interaction Modeling

- Wide range of energies
 - Spans QE, RES, DIS
- Range of nuclear targets across experiments
 - Hydrogen, Deuterium, Carbon, Argon, Iron, Lead
- Complex QCD physics inside nucleus
 - Nuclear initial state
 - Nucleon-nucleon correlations
 - Final state interactions

μ

RevModPhys.84.1307

Cross Section Modeling with GENIE

- GENIE is the primary *v* interaction event generator for Fermilab experiments
 - Development is huge effort, tons of knobs
 - Lots of approx/estimates room for improvement
- GENIE v3 is the latest major release
 - Genie v2 is also in use by other experiments
 - Many configurations possible within Genie v3. Details in <u>Eur. Phys. J. Spec. Top. 230,</u> <u>4449–4467 (2021)</u>
- MicroBooNE uses GENIE v3.0.6 G18_10a_02_11a
 - MicroBooNE tune discussed later
 - MicroBooNE was the first experiment to adopt GENIE v3

Historical: RFG, Llewellyn Smith CCQE, Rein-Sehgal RES, hA FSI

LFG, Valencia CCQE, Berger-Sehgal improved RES modeling

SuSAv2 CCQE, hN FSI

See Steven Gardiner's talk for new results!

Underlined version is used in MicroBooNE model

Modeling the Nuclear Initial State

- Historical model: Relativistic Fermi Gas (RFG)
 - \circ Non-interacting nucleons with momentum up to Fermi momentum $k_{\rm F}$
 - Non-zero momentum tail above k_F to account for short-range nucleon-nucleon correlations
- Local Fermi Gas (LFG) model
 - k_F is a function of radius, derived from nucleon density distribution
 - Underpins Valencia CCQE and CCMEC modeling with shared use of density distribution
- Correlated Fermi Gas (CFG) model
 - Re-introduces non-zero momentum tail above k_F
 - Included in GENIE 3.2

W (GeV)

Modeling of Charged Current Quasi-Elastic (CCQE) and Meson-Exchange Current (CCMEC) interactions

- Historical model: Llewellyn-Smith
 - Free nucleon model with corrections for Pauli blocking and binding energy
 - Accurate at higher energies (>2 GeV)
- Valencia model for CCQE and CCMEC interactions
 - **RPA corrections** for long range correlations
 - Corrections for Coulomb interactions of outgoing lepton
- SuperScaling Approach (<u>SuSAv2</u>) model
 - RFG model predicts lepton cross section scales ~ $\psi(q,\omega)$
 - SuSAv2 combines scaling in (e,e') data s longitudinal channel with RMF prediction of significant transverse channel scaling

Underlined version is used in MicroBooNE model

Modeling of *A*-Resonance (RES) Interactions

- Historical model: Rein-Sehgal
 - Dipole expansion of axial form factor with axial-vector mass $M_A^{RES} = 1.12 \text{ GeV}$
- Berger-Sehgal model
 - Includes modeling improvements of nonzero lepton mass, lepton polarization, pion pole contribution
- To first-order, bubble chamber data gives good constraints
 - Small A means fewer FSI effects
 - Multi-dimensional phase space

MicroBooNE Public Note 1031

Modeling of Deep Inelastic Scattering (DIS) Interactions

- Significant for DUNE, not as much MicroBooNE / SBN
- Bodek-Yang model for CCDIS interactions
- GENIE default has large uncertainties on non-RES π (50%) and DIS (25-40%) parameters

Modeling of Final State Interactions (FSI)

- Impact of FSI is well demonstrated in published measurements
 - FSI sensitivity varies greatly with interaction channel and across phase space
 - Large impact at high δp_{T}
 - FSI impact increases with nuclear size A

MicroBooNE tune of GENIE v3

- Out-of-box GENIE v3.0.6 G18_10a_02_11a under-predicted data
 - Particularly prevalent at low energy (<600 MeV)
- Tuned to T2K CC0 π data (CH target)
 - Independent detector and beam
 - CCQE physics at a similar energy range
- Tuned 2 CCQE and 2 CCMEC parameters
 - \circ Reflect known uncertainties in models of CC0 π cross sections
 - Cannot easily be constrained by electron scattering data
 - \circ $\,$ Can be constrained by T2K data

MicroBooNE tune of GENIE v3

- CCQE tuned parameters
 - CCQE M_A low nominal value of ~0.96 GeV contributes to underpredicting data
 - RPA strength implemented by interpolating between Valencia model and no RPA correction

• CCMEC tuned parameters

- CCMEC normalization proportionally scales CCMEC contribution
- CCMEC shape implemented by interpolating between Valencia model and GENIE empirical model

Fitted Parameters

All Non-Default Parameters

0.06

0.05

events 0.04

Genie v3 Tuned vs MicroBooNE Data

Impact of Cross Section Uncertainties on Oscillation Measurements

- Inclusive signal
 - Not concerned with final state composition (eg: particle multiplicity, charge exchange)
- Requires E_v measurement
 - Transfer energy contains invisible portion in LArTPC (eg: neutrons)
 - Potential source of model dependence
- Cross section uncertainties
 dominant at low E_v for both v_e and v_µ
 • MicroBooNE uses sideband constraints in
 - MICroBoone uses sideband constraints i place of 2-detector setup

Impact of Cross Section Uncertainties on Oscillation Measurements

- Inclusive signal
 - Not concerned with final state composition (eg: particle multiplicity, charge exchange)
- Requires E_v measurement
 - Transfer energy contains invisible portion in LArTPC (eg: neutrons)
 - Potential source of model dependence
- Cross section uncertainties
 dominant at low E_v for both v_e and v_µ
 • MicroBooNE uses sideband constraints in
 - MicroBooNE uses sideband constraints in place of 2-detector setup

v_{e} CC Inclusive eLEE Search Uncertainty

PhysRevD.105.112005

Impact of Cross Section Uncertainties on Cross Section Measurements

- Often exclusive signal
 - Backgrounds from interaction channels such as MEC
 - Impact varies between signal definitions
- Unfolding naturally suppresses cross section uncertainties
- Impact of cross section uncertainties depends on kinematic distribution
 - Sub-dominant across E_{Cal}
 - $\circ \quad \text{Dominant at high } \delta \textbf{p}_{T}$

v_{μ} CC 1p0 π Cross Section Uncertainty

-Total-NuWro-Stat-LY -TPC -SCERecomb2-XSec -G4 -Flux -Dirt-POT-NTarget-MCStat

Impact of Cross Section Uncertainties on Cross Section Measurements

- Often exclusive signal
 - Backgrounds from interaction channels such as MEC
 - Impact varies between signal definitions
- Unfolding naturally suppresses cross section uncertainties
- Impact of cross section uncertainties depends on kinematic distribution
 - Sub-dominant across E_{Cal}
 - $\circ \quad \text{Dominant at high } \delta \textbf{p}_{T}$

v_{μ} CC 1p0 π Cross Section Uncertainty

-Total-NuWro-Stat-LY -TPC -SCERecomb2-XSec -G4 -Flux -Dirt-POT-NTarget-MCStat

Impact of Cross Section Parameter Uncertainties on v_{μ} CC 1p0 π **1-Bin** Cross Section Measurement

CCQE Parameters

	1σ Genie Uncertainty	Fractional Contribution to Meas
RPA Strength	40 %	2.1 %

CCMEC Parameters

	1σ Genie Uncertainty	Fractional Contribution to Meas
CCMEC Norm	50 %	1.832 %
MEC Decay Angle	lsotropic vs cos²θ	0.693 %

PhysRevD.108.053002 Supplemental Material

*Largest uncertainties shown here; full list in backup slides

RES Parameters

	1σ Genie Uncertainty	Fractional Contribution to Meas
M _A CCRES	20%	0.986 %
M, CCRES	10%	0.775 %
M _A NCRES	20%	0.969 %
⊿→N+π Angle	Rein-Sehgal vs Isotropic	1.533 %

FSI Parameters

	1σ Genie Uncertainty	Fractional Contribution to Meas
Nucleon Mean Free Path	20 %	1.212 %
π Absorption	30 %	0.906 %
Nucleon Charge Exchange	20 %	0.953 %
Nucleon Absorption	40 %	0.906 %

Summary

- Neutrino interaction modeling is important for precision oscillation measurements
 - Modeling is adequate for MicroBooNE, must do better for future experiments
- Many new model developments in recent years
 - Initial state models, CCQE models (SuSAv2, RPA correction), FSI models, ...
- Areas of significant model disagreement
 - RPA corrections, MEC contribution, FSI, ...
- Cross section measurements can continue to guide model development
 - Multi-dimensional phase spaces, high statistics, new detectors and unfolding methods, new kinematics being measured

MicroBooNE Tune v_{a} CC Inclusive Cross Section

Backup

Parameter	Central value	$+1\sigma$	-1σ
CCQE form factor parametrization	and a second distances		
AxFFCCOEshape	Dipole	Z expansion	N/A
VecFFCCQEshape	BBA07	Dipole	N/A
NC elastic form factors		1	
MaNCEL	0.961242 GeV	+25%	-25%
EtaNCEL	0.12	+30%	-30%
RES form factors and decays			
Maccres	1.065047 GeV	+20%	-20%
Macches	0.840 GaV	+ 10%	-20%
MINCRES	1.120 GeV	+10%	-10%
MANCRES	0.840 GeV	+20%	-20%
DD DD1	0.840 Gev	+10%	-10%
RDecBR1gamma	Nominal	+50%	-50%
RDecBRIeta	Nominal	+50%	-50%
Theta_Delta2Npi	Nominal	Isotropic	N/A
AGKY hadronization model			
AGKYxFIpi	-0.385	+20%	-20%
AGKYpT1pi	1/6.625 GeV ²	+3%	-3%
Normalization of non-RES final state	25		
NonRESBGvpCC1pi	0.007713	+50%	-50%
NonRESBGvpCC2pi	0.787999	+50%	-50%
NonRESBGvnCC1pi	0.127858	+50%	-50%
NonRESBGvnCC2pi	2.11523	+50%	-50%
NonRESBGvbarpCC1pi	0.127858	+50%	-50%
NonRESBGvbarpCC2pi	2.11523	+50%	-50%
NonRESBGybarnCC1pi	0.007713	+50%	-50%
NonRESBGybarnCC2pi	0.787999	+50%	-50%
NonRESBGvpNC1pi	0.1	+50%	-50%
NonRESBGvpNC2pi	1	+50%	-50%
NonRESBGynNC1pi	0.3	+50%	-50%
NonRESBGynNC2ni	1	+50%	-50%
NonRESBGybarnNC1ni	0.3	+50%	-50%
NonRESBGybarnNC2ni	1	+50%	-50%
NonRESBGybarnNC1ni	0.1	+50%	-50%
NonRESBGybarnNC2pi	1	+50%	-50%
Bodek Vana structure functions			
AhtBY	0.538 GeV ²	+25%	-25%
BhtBV	0.305 GeV^2	+25%	-25%
CVInPV	0.303 GeV	1 2005	200
CV2uBY	0.190 GeV ²	+40%	-40%
C V2ub1	0.189 Gev	14070	-4070
Final-state interactions	LA2018	1200	200
MFP_pi	hA2018	+20%	-20%
MFP_N	nA2018	+20%	-20%
FICEX_pi	nA2018	+50%	-50%
Frinel_pi	hA2018	+40%	-40%
FrAbs_pi	hA2018	+30%	-30%
FrPiProd_pi	hA2018	+20%	-20%
FrCEx_N	hA2018	+50%	-50%
Frinel_N	hA2018	+40%	-40%
FrAbs_N	hA2018	+20%	-20%
FrPiProd_N	hA2018	+20%	-20%

Parameter	Description	CV	lσ Uncertainty	Contributing Uncertainty (%) Total (Sig/Bkg)
Quasi-Elastic Paramete	rs			
MaCCQE	CCQE axial mass	$1.10 { m GeV}$	$\pm 0.1 \text{ GeV}$	$0.038 \ (0.256, \ 0.218)$
RPA CCQE	Strength of the RPA correction	0.151	± 0.4	2.094 (1.989, 0.104)
MaNCEL	Axial mass for NCEL	$0.961242~{ m GeV}$	$\pm 25\%$	0.348 (0.010, 0.348)
EtaNCEL	Empirical parameter used to account for sea quark contribution to NCEL form factor	0.12	$\pm 30\%$	0.010 (0.010, 0.010)
AxFFCCQEshape	Parametrisation of the nucleon axial form factor	Dipole	z-expansion	0.022 (0.016, 0.031)
VecFFCCQEshape	Parametrisation of the nucleon vector form factors	BBA07	Dipole	0.051 (0.186, 0.137)
MEC Parameters				
NormCCMEC	Energy-independent normalization for CCMEC	1.66	± 0.5	1.832 (0.514, 1.319)
NormNCMEC	Energy-independent normalization for NCMEC	1	$\pm 20\%$	0.129 (0.010, 0.129)
FracPNCCMEC	Fraction of initial nucleon pairs that are pn $(0 = \text{Valencia})$	0	$\pm 20\%$	0.041 (0.333, 0.293)
FracDeltaCCMEC	Relative contribution of Δ diagrams to total MEC cross section (0 = Valencia)	0	$\pm 30\%$	0.124 (0.124, 0.158)
XSecShape CCMEC	Changes shape of differential cross section	1.0	0.0	2.273 (1.762, 0.511)
DecayAngMEC	Changes angular distribution of nucleon cluster	Isotropic	$\cos^2 \vartheta$ in rest frame	0.693 (0.290, 0.404)
Resonant Parameters				
MaCCRES	CCRES axial mass	$1.120 \mathrm{GeV}$	± 0.2	0.986 (0.119, 1.103)
MVCCRES	Shape-only CCRES axial mass	$0.840~{\rm GeV}$	± 0.1	0.775 (0.121, 0.896)
MaNCRES	NCRES axial mass	$1.120 \mathrm{GeV}$	± 0.2	0.969 (0.010, 0.969)
MvNCRES	NCRES vector mass.	$0.840 { m GeV}$	± 0.1	0.395 (0.010, 0.395)
ThetaDelta2Npi	Interpolates angular distribution for $\Delta \to N + \pi$	Rein-Sehgal	Isotropic	1.533 (0.142, 1.392)
ThetaDelta2NRad	Interpolates angular distribution for $\Delta \rightarrow N + \gamma$	Rein-Sehgal	$\cos^2 \vartheta$	0.016 (0.016, 0.016)

Parameter	Description	CV	lσ Uncertainty	Contributing Uncertainty (%) Total (Sig/Bkg)
Non-Resonant Parameters				
NonRESBGvpNC1pi	Non-resonant background normalization for ${\bf vp}~{\rm NC1}\pi$	0.1	± 0.5	$0.041 \ (0.010, \ 0.041)$
NonRESBGvpNC2pi	Non-resonant background normalization for ${\sf vp}$ NC2 $\!\pi$	1	± 0.5	0.096 (0.010, 0.096)
NonRESBGvnNC1pi	Non-resonant background normalization for vn $\rm NC1\pi$	0.3	±0.5	0.390 (0.010, 0.390)
NonRESBGvnNC2pi	Non-resonant background normalization for $\nu n~{\rm NC}2\pi$	1	±0.5	0.022 (0.010, 0.022)
NonRESBGvbarpNC1pi	Non-resonant background normalization for $\bar{\nu}p$ NC1 $\!\!\pi$	0.3	± 0.5	0.010 (0.010, 0.010)
NonRESBGvbarpNC2pi	Non-resonant background normalization for $\bar{\nu}p~NC2\pi$	1	± 0.5	0.010 (0.010, 0.010)
NonRESBGvbarnNC1pi	Non-resonant background normalization for $\bar{\nu}n~NC1\pi$	0.1	± 0.5	0.010 (0.010, 0.010)
NonRESBGvbarnNC2pi	Non-resonant background normalization for $\bar{\nu}n~NC2\pi$	1	± 0.5	0.010 (0.010, 0.010)
NonRESBGvpCC1pi	Non-resonant background normalization for $\nu p~{\rm CC1}\pi$	0.007713	± 0.5	0.014 (0.010, 0.019)
NonRESBGvpCC2pi	Non-resonant background normalization for $\nu p~{\rm CC2}\pi$	0.787999	± 0.5	0.059 (0.010, 0.063)
NonRESBGvnCC1pi	Non-resonant background normalization for vn ${\rm CC1}\pi$	0.127858	± 0.5	0.217 (0.034, 0.250)
NonRESBGvnCC2pi	Non-resonant background normalization for vn ${\rm CC2}\pi$	2.11523	±0.5	0.079 (0.010, 0.077)
NonRESBGvbarpCC1pi	Non-resonant background normalization for $\bar{\nu}p~{\rm CC1}\pi$	0.127858	± 0.5	0.013 (0.010, 0.013)
NonRESBGvbarpCC2pi	Non-resonant background normalization for $\bar{\nu}p~CC2\pi$	2.11523	± 0.5	0.010 (0.010, 0.010)
NonRESBGvbarnCC1pi	Non-resonant background normalization for $\bar\nu n~{\rm CC1}\pi$	0.007713	±0.5	0.010 (0.010, 0.010)
NonRESBGvbarnCC2pi	Non-resonant background normalization for $\bar\nu n~CC2\pi$	0.787999	± 0.5	0.010 (0.010, 0.010)
AhtBY	$A_{\rm HT}$ higher-twist parameter in the Bodek-Yang model scaling variable ξ_w	0.538	± 0.25	0.010 (0.010, 0.010)
BhtBY	BHT higher-twist parameter in the Bodek-Yang model scaling variable $\xi_{\rm w}$	0.305	± 0.25	0.010 (0.010, 0.010)
CV1uBY	CV1u valence GRV98 PDF correction parameter in the Bodek-Yang mode	0.291	± 0.3	0.010 (0.010, 0.010)
CV2uBY	CV2u valence GRV98 PDF correction parameter in the Bodek-Yang mode	0.189	± 0.4	0.010 (0.010, 0.010)
Hadronisation Parameters				
AGKYxF1pi	Hadronization parameter, applicable to true DIS interactions only	-0.385	± 0.2	0.108 (0.013, 0.120)
AGKYpT1pi	Hadronization parameter, applicable to true DIS interactions only	1/6.625	± 0.03	0.034 (0.014, 0.046)
Final State Interaction Param	eters			
MFP_{π}	π mean free path	0	± 0.2	0.032 (0.010, 0.028)
MFPN	Nucleon mean free path	0	± 0.2	1.212 (1.067, 0.147)
FrCEx _z	Fractional cross section for π charge exchange	0	±0.5	0.159 (0.025, 0.184)
$FrInel_{\pi}$	Fractional cross section for π inelastic scattering	0	± 0.4	0.133 (0.042, 0.091)
FrAbs _π	Fractional cross section for π absorption	0	± 0.3	0.906 (0.066, 0.019)
FrCEx _N	Fractional cross section for nucleon charge exchange	0	± 0.2	0.953 (0.411, 0.542)
FrInel _N	Fractional cross section for nucleon inelastic scattering	0	± 0.5	0.289 (0.228, 0.061)
FrAbs _N	Fractional cross section for nucleon absorption	0	± 0.4	0.906 (0.526, 0.380)
Delta Resonant Decay Parame	eters			
RDecBR1gamma	Normalization for $\Delta \rightarrow \gamma$ decays	Nominal BR	± 0.5	0.042 (0.017, 0.025)
RDecBR1eta	Normalization for $\Delta \rightarrow \eta$ decays	Nominal BR	± 0.5	0.513 (0.198, 0.324)
Coherent Parameters				
NormCCCDH	Scaling factor for CCCOH π production total cross section	Nominal	100% increase	0.027 (0.016, 0.027)
NormNCCOH	Scaling factor for NCCOH π production total cross section	Nominal	100% increase	0.016 (0.016, 0.016)

https://arxiv.org/abs/2403.19574

