Fermilab (C) ENERGY Office of Science

Fermilab Neutrino Beams

Žarko Pavlović

NuINT 2024, April 16 2024

‡Fermilab (

Linac

Muon Area

Booster.

uperconducting Linac

Part of proposed PIP II projec

Fermilab Neutrino beams

• BNB, NuMI, LBNF

- Conventional neutrino beams
 - Target, focusing horn(s), decay region, absorber, detector(s)
- Flux calculation requires
 - Simulating meson production
 - Tracking particles through magnetic fields and downstream material down to their decay point
- Neutrino Beam Neutrino Beam Neutrino Beam To South Dakota part of proposed Lahif project
- Calculating the probability for neutrinos to hit the detector

Fermilab 🔘 Ene

Flux prediction

- All 3 beam lines use geant4 based simulations for flux prediction (fluka also used in past for NuMI target or with flugg - g4/fluka interface)
- Define beamline geometry (including magnetic fields)
- Define Physics
 - Particles and processes (models, cross sections)
- Track particles and record all events producing neutrinos

Tuning Beam MC

- Geant4 models improving over the years, but deviations from data persist
- Not expecting perfect match to data for all the processes that matter for neutrino flux
- Tuning done by modifying the geant4 models and/or reweighing
 - Using external data that covers the phase space relevant for neutrino flux

Booster Neutrino Beam

- 8 GeV protons from Booster
- 1.7 int. length Be target
- Single Horn
 - Neutrino & Antineutrino mode ±174kA
- 50m long decay pipe

7 Fermilab

Neutrino Flux Prediction

- Geant4 based simulation
- Hadron production cross sections tuned to external data
- Proton, pion cross sections on Be, Al tuned

	i	$ u_{\mu}$	ī	$\overline{\nu}_{\mu}$
Flux $(\nu/{\rm cm}^2/{\rm POT})$		5.19×10^{-10}		3.26×10^{-11}
Frac. of Total		93.6%		5.86%
Composition	π^+ :	96.72%	π^- :	89.74%
	K^+ :	2.65%	$\pi^+ \rightarrow \mu^+$:	4.54%
	$K^+ \rightarrow \pi^+$:	0.26%	K^- :	0.51%
	$K^0 \rightarrow \pi^+$:	0.04%	K^0 :	0.44%
	K^0 :	0.03%	$K^0 \to \pi^- \text{:}$	0.24%
	$\pi^- \rightarrow \mu^-$:	0.01%	$K^+ \rightarrow \mu^+$:	0.06%
	Other:	0.30%	$K^- \rightarrow \pi^-$:	0.03%
			Other:	4.43%
	i	ν _e	Ī	<i>v</i> _e
Flux $(\nu/\mathrm{cm}^2/\mathrm{POT})$		2.87×10^{-12}		3.00×10^{-13}
Frac. of Total		0.52%		0.05%
Composition	$\pi^+ \rightarrow \mu^+$:	51.64%	K_{L}^{0} :	70.65%
	K^+ :	37.28%	$\pi^- \to \mu^-$	19.33%
	K_{L}^{0} :	7.39%	K^- :	4.07%
	π^+ :	2.16%	π^- :	1.26%
	$K^+ \rightarrow \mu^+$:	0.69%	$K^- \rightarrow \mu^-$:	0.07%
	Other:	0.84%	Other:	4.62%

Pion production

- 90% of ν_{μ} s come from primary pion production in the target
- HARP measurement (8 GeV protons on Be target) covers ~78.7% of relevant pion production
- Sanford-Wang fits HARP (and E910 data)
- Fits done both for pi+ and pi-
- HARP systematic error propagated by using splines through HARP data taking into account the full error matrix

Phys. Rev. D79, 072002 (2009)

K⁺ and K⁰_L Production

- Feynman scaling parameterization used to fit world K+ production data
- Datasets scaled to 8.89GeV cover 1.2< $P_{\rm K^{8.89}}$ [GeV /c] <5.5
- Some of the datasets had issues with normalization *Phys. Rev. D84 114021 (2011)*
- Sanford-Wang fits to K_{S}^{0} production data from BNL E910 (p_{beam} = 12.3 and 17.5 GeV/c) and KEK Abe et al. (12.3 GeV/c)
 - Most relevant forward production not fully covered *Phys. Rev. D79, 072002 (2009)*

Using neutrinos to constrain flux

- Kaon production further constrained by SciBooNE measurements
- High energy neutrinos from K⁺
- Found production to be 0.85+-0.12 relative to the global fit to kaons
- Joint fit to global K⁺ data and SciBooNE

Phys.Rev.D84,012009 (2011)

 $MRD-Penetrated \\ K^+$ T^+ $From K^+$ F_V (MeV) MC F_V (MeV) MC F_V (MeV) MC MC MC K^+ F_V (MeV)

Hadronic interactions

- Measured cross sections used where available
- QEL uncertainties largest effect

	p-(Be/Al)	n-(Be/Al)	π^{\pm} -(Be/Al)
σ_{TOT}	Glauber	Glauber	Data $(p < 0.6/0.8 \text{GeV}/c)$
		(checked with data)	Glauber ($p > 0.6/0.8 \text{GeV}/c$)
σ_{INE}	Data	(same as p-Be/Al)	Data
σ_{QEL}	Shadow	Shadow	Data ($p < 0.5{\rm GeV}/c$)
			Shadow $(p > 0.5 \text{GeV}/c)$

	$\Delta \sigma_{TOT} \ ({ m mb})$ Be Al		$\Delta \sigma_{INE} \ ({\rm mb})$		$\Delta \sigma_{QEL} \ ({ m mb})$	
			Be Al		Be Al	
(p/n)-(Be/Al)	± 15.0	± 25.0	± 5	± 10	± 20	± 45
π^{\pm} -(Be/Al)	± 11.9	± 28.7	± 10	± 20	± 11.2	± 25.9

Systematic errors

- Full propagation of HARP errors using splines (many universes)
- Kaon production errors from parameterization fit parameter errors (many universes)
- Other parameters varied +-1 sigma

Systematic	$ u_{\mu}/\%$	$ar{ u}_{\mu}/\%$	$ u_e/\%$	$ar{ u}_e/\%$	
Proton delivery	2.0	2.0	2.0	2.0	
π^+	11.7	1.0	10.7	0.03	
π^-	0.0	11.6	0.0	3.0	
K^+	0.2	0.1	2.0	0.1	
K^{-}	0.0	0.4	0.0	3.0	
K_L^0	0.0	0.3	2.3	21.4	
Other	3.9	6.6	3.2	5.3	
Total	12.5	13.5	11.7	22.6	

Future development

- Upgrading g4bnb simulation
 - Primary production constrained with same existing data
 - More modern, better geant4 models for reinteractions
 - Adding new data
- Constraints using neutrino data
 - PRISM (loana's talk yesterday, Moon's talk on Wednesday)

🖩 Fermilab 🔘 🖲

NuMI Beam

- 120 GeV protons from Main Injector
- 2 int. lengths graphite target
- Two magnetic horns
 - Neutrino & anti-neutrino mode
- 675m long decay pipe
- Low Energy and Medium Energy running
- Argoneut, MINERvA, MINOS, NOvA
- MicroBooNE, ICARUS far off axis

Reinteractions

- Tertiary production becomes more important for higher energy beams
- In addition to p+C production data, need to constrain reinteractions currently not covered by data to achieve ultimate precision

NuMI beam simulation (g4numi)

- Geant4 based simulation
- Using PPFX package to constrain models to external hadron production data
 - Developed for MINERvA and now used by all experiments seeing NuMI neutrinos
- Correcting the simulation through reweighing
 - Keep complete information about cascades leading to a neutrino
- Interactions are weighted by:

$$w_{HP} = \frac{f_{Data}(x_F, p_T, E = 158GeV) \times scale(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}$$

- Scale determined by fluka to enable scaling NA49 to lower proton momenta
- Second weight is applied to account for exponential decay of beam

$$w_{att} = e^{-L\rho(\sigma_{Data} - \sigma_{MC})}$$

$$f = E \frac{d^3\sigma}{dp^3}$$

Phys. Rev. D 94, 092005 (2016)

🖓 Fermilab 🛛

PPFX External data

- Data sets currently used:
 - NA49 158 GeV protons (Eur.Phys.J.C49: 897-917, 2007, Eur. Phys. J. C73, 2364 (2013))
 - Barton et. al. 100 GeV protons (Phys. Rev. D 27, 2580) NA49 pC → K±X (G.Tinti Thesis)
 - MIPP K/pi ratios (A.V. Lebedev Thesis)
- Extensions of data:
 - pC → π+X cross section assumed to be the same as nC → π-X and vice versa (isospin symmetry)
 - Carbon data used for other nuclei
 - 158 GeV proton data used for incident energies between 12 and 120 GeV, with scaling taken from Fluka

Predicted flux and uncertainties

- Systematics evaluated using multiple universes technique
- Large 40% uncertainty assumed for processes not covered by data

Additional constraints

- Minerva uses in-situ measurements to further constrain the flux:
 - ν+e scattering (talk by Luis)
 - Inverse Muon Decay
 - (Low hadronic recoil)

Constrained / co	Flux: v _µ (v _µ -mode) Unconstrained Constrained
0	E_{v} (GeV)
0.3	
Il Flux Uncertainty	Flux: v_{μ} (v_{μ} -mode) — Unconstrained — Constrained
Eraction	
Constrained / Unconstrained / 0.0 Unconstrained 2500 2900 2900 2000 2000 2000 2000 2000	

	$\bar{ u}_{\mu}$ -mode				ν_{μ} -mode			
	$\bar{ u}_{\mu}$	$\bar{ u}_e$	$ u_{\mu}$	$ u_e$	$ u_{\mu}$	$ u_e$	$ar{ u}_{\mu}$	$\bar{ u}_e$
a priori	7.76	7.81	11.1	11.9	7.62	7.52	12.2	11.7
$ u_{\mu}$ -mode νe^{-}	6.11	5.81	6.30	8.50	3.90	3.94	8.37	8.68
$\bar{\nu}_{\mu}$ -mode νe^{-}	4.92	4.98	8.07	9.19	5.88	5.68	8.36	8.64
combined νe^-	4.68	4.62	5.56	7.80	3.56	3.58	7.15	7.84
combined νe^- + IMD	4.66	4.56	5.20	6.08	3.27	3.22	6.98	7.54

Phys.Rev.D 107 (2023) 1, 012001

LBNF

- 120 GeV protons on 3 int. lengths long graphite target
- 3 horns
 - Polarity can be switched to produce neutrino or antineutrino enhanced beam
- 221m long decay region
- Optimized beam design for sensitivity to CP-violation

4 Fermilab

LBNF simulation (g4lbnf)

- Need very precise flux prediction to achieve the DUNE precision measurements
 - Most detailed geometry so far
 - Need more external data to constrain the geant4 models
- Need flux at near, far detector and various off-axis locations for PRISM analysis and correlations between all of them

Systematic errors (Hadron Production)

- Using ppfx to propagate the errors
 - Data cross sections varied according to their uncertainties (taking into account correlations)
- Large 40% uncertainty assumed for processes not covered by data

Future work NuMI/LBNF

- Update geant4 version
- Geometry updates to g4lbnf as engineering being finalized
- Adding new data to PPFX
 - NA61 (Andrew's talk)
 - Emphatic (Leo's talk, Robert's poster)
- First measurement of hadron production behind horn with EMPHATIC

Focusing uncertainties

- Additional uncertainty due to various misalignments in the beamline/geometry mismatches, beamline instrumentation miscalibrations
- Becoming more and more important as hadron production errors get more constrained
- Need good beam monitoring to constrain these errors

7 Fermilab

Conclusion

- Geant4 based simulations used to predict flux for BNB, NuMI and LBNF
- Additional tuning done to match external data where available
- Systematic errors propagated from hadron production experiments
- Data from neutrino detectors used to further constrain flux
- Focusing uncertainties getting more important as hadron production gets more constrained

