# NA61/SHINE Hadron Production Measurements

Andrew Olivier On behalf of the NA61/SHINE collaboration April 16, 2024



#### Neutrino Beams





- Current conventional neutrino beams produced by:
  - Intense proton beam hits target
  - Pions and kaons produced
  - Charged mesons focused with magnetic horns
  - Mesons decay to charged leptons and neutrinos

### Neutrino Beam Simulation





#### Neutrino Beam Simulation



- Kinematics

# Hadron Production Experiments

- Measure inputs to "physics process"
- Thin target
  - Proton on Carbon, etc.
  - Inelastic and production cross sections
  - Differential production yields
  - Tune e.g. GEANT models
- Replica target
  - Proton on e.g. replica NuMI target
  - Differential production yields for each species
  - Directly predict particle rates from target





Figure: Yoshikazu Nagai



# NA61/SHINE



- SPS Heavy Ion and Neutrino Experiment
- Detector: magnetized tracking spectrometer
- Beam:
  - Protons from
    CERN SPS
  - Pions, kaons, etc.
  - Energy: 20-400 GeV/c



- Thin targets: carbon, Al, Be, etc.
- Thick target: T2K, NuMI, DUNE <sup>6</sup>

#### Where is NA61/SHINE?





No. States

from SPS

**SPS** 

PSB

**PS** 

JINST 9 (2014) P06005



- CERN's North Area = Prevessin site
- Same building as ProtoDUNEs and just upstream
- Offices in same building as old ProtoDUNE-SP offices

# Heavy Ion Experiment



Home > The European Physical Journal C > Article

#### Search for the critical point of stronglyinteracting matter in <sup>40</sup>Ar + <sup>45</sup>Sc collisions at 150A Ge V /c using scaled factorial moments of protons

Regular Article – Experimental Physics | Open access | Published: 30 September 2023

Volume 83, article number 881, (2023) <u>Cite this article</u>

Download PDF  $\,\pm\,$ 

✓ You have full access to this open access article

H. Adhikary, P. Adrich, K. K. Allison, N. Amin, E. V. Andronov, T. Antićić, I.-C. Arsene, M. Bajda, Y. Balkova, M. Baszczyk, D. Battaglia, A. Bazgir, S. Bhosale, M. Bielewicz, A. Blondel, M. Bogomilov, Y. Bondar, N. Bostan, A. Brandin, W. Bryliński, J. Brzychczyk, M. Buryakov, A. F. Camino, P. Christakoglou, ... R. Zwaska Show authors

- NA61/SHINE's other main topic is heavy ion physics
- Also great at measuring hadron production for neutrino and cosmic ray physics
- Very important to support this collaboration for beam modeling!

# Impact on T2K





Credit: E. D. Zimmerman seminar 2024

- First application of NA61 data to a neutrino experiment
- Dedicated simulation tuning to NA61 data
- Two iterations:
  - Thin target data: tune physics processes
  - "Long target": tune outgoing hadron multiplicity to replica target data

# Example: NuMI through PPFX





- Package to Predict the FluX predicts neutrino flux given:
  - Protons
  - Horn geometry
  - GEANT cross section models: NA61 improves this!
- NA61 measurements translated to NOvA results through PPFX

#### PPFX





- Near detector hadron production uncertainties
- Solid lines: cross
  sections covered by
  existing data from e.g.
  NA49
- Incident nucleon: cross sections not yet covered by data
- NA61 reduces "incident nucleon" by:
  - covering more phase space than NA49
  - Reporting 11 covariance

# Our Hadron Production Measurements



- p+C@120 GeV/c
  - Charged: p, pi, and K *Phys.Rev.D* 108 (2023) 072013
  - Neutral: K0s and lambdas *Phys.Rev.D* 107 (2023) 7, 072004
- p+T2K@31 GeV/c
  - Charged p, pi, K, neutral K, and lambdas Eur.Phys.J.C 76 (2016) 2, 84
  - Differential Pi+/- yields Eur.Phys.J.C 76 (2016) 11, 617
  - Charged p, pi, and K *Eur.Phys.J.C* 79 (2019) 2, 100
- p+C@31 GeV/c
  - K+: *Phys.Rev.C* 85 (2012) 035210
  - Neutral K0s and lambdas *Phys.Rev.C* 89 (2014) 2, 025205
  - Production cross section and differential yields for p, pi, K, K<sup>0</sup>, and lambdas *Phys.Rev.D* 103 (2021) 1, 012006
- Pi and K on thin target
  - C and Al at 60 GeV/c and 31 GeV/c: *Phys.Rev.D* 98 (2018) 5, 052001
  - C and Be at 60 GeV/c: *Phys.Rev.D* 100 (2019) 11, 112004
- Protons on thin target
  - Production and inelastic cross sections on C, Be, Al at 60 GeV/c and 120 GeV/c: 12 Phys.Rev.D 100 (2019) 11, 112001

#### **Recent Measurements**



- p+C@120 GeV/c
  - Thin target cross sections
  - Charged: pi, p, and K

Measurements of  $\pi^+$ ,  $\pi^-$ , p,  $\overline{p}$ , K<sup>+</sup> and K<sup>-</sup> production in 120 GeV/c p + C interactions NA61/SHINE Collaboration • H. Adhikary (Jan Kochanowski U.) et al. e-Print: 2306.02961 [hep-ex] DOI: 10.1103/PhysRevD.108.072013 (publication) Published in: Phys.Rev.D 108 (2023), 072013

#### Neutral: K<sup>0</sup> and lambdas

Measurements of  $K_{s}^{0}$ ,  $\Lambda$ , and  $\overline{\Lambda}$  production in 120 GeV/c p+C interactions NA61/SHINE Collaboration • H. Adhikary (Jan Kochanowski U., Kielce (main)) et al. e-Print: 2211.00183 [hep-ex] DOI: 10.1103/PhysRevD.107.072004 (publication) Published in: Phys.Rev.D 107 (2023) 7, 072004

- p+C@90 GeV/c
  - Charged pi, p, and K; neutral K<sup>0</sup> and lambdas

# p+C@120 GeV/c





- Phys.Rev.D 108 (2023), 072013
- $\pi^{+/-}$ , protons, K<sup>+/-</sup>, and antiprotons on carbon at 120 GeV/c
- 20x statistics in new 2023 data

## Forward TPCs





 New forward-phase-space TPCs for NuMI data

# p+C@120 GeV/c





- Phys.Rev.D 107 (2023) 7, 072004
- $K_{s}^{0}$  and lambdas on carbon at 120 GeV/c
- Different models agree in different regions of phase space

# p+C@90 GeV/c



#### $\theta$ vs |p| (All Cuts) 0 [rad] 0.35 NA61 Work in Progress 60 0.3 50 0.25 40 0.2 30 0.15 20 0.1 10 0.05 25 5 10 15 20 30 |p| [GeV/c]

- Above: K<sup>0</sup><sub>s</sub> phase space coverage
- Secondary interactions in target system lead to hadrons of all energies below beam energy
- Important to measure intermediate energies to test scaling <sup>17</sup>



| 2017 pC90 Data |
|----------------|
| <br>FTFP_BERT  |
| <br>QGSP_BERT  |
| <br>FTF_BIC    |
| <br>QBBC       |
| geant4-10-07   |





- Publication in preparation
- Charged and neutral multiplicities
- Fills in gaps between T2K and NuMI energies for e.g. secondary proton scattering inside NuMI target <sup>18</sup>

### **Planned Measurements**



- p+C@60 GeV/c
  - Charged
  - Neutral
- p+NOvA@120 GeV/c
  - Charged
  - Neutral
- p+DUNE@120/c GeV: Summer 2024
- Lower energy beam

# NuMI Analysis Progress





- "Long target" analysis for NuMI experiments
- 120 GeV/c protons on spare NuMI target
- Data collected in 2018
- Planning separate charged and neutral particle papers
- Currently calibrating



# **DUNE Target Plans**





- DUNE prototype target coming to NA61 in 2024
- Same measurements as NuMI
  - Particle multiplicity
  - 120 GeV/c protons

# Very Low Energy Beam





- Goal: extend beam coverage down from 20 GeV/c to 2 GeV/c
- Outcome:
  - Hadron production measurements for BNB
  - Atmospheric neutrinos at SuperK
  - Additional hadron production measurements for T2K and HyperK
  - Hadron production for DUNE second oscillation maximum
- New collaborators welcome









## Lambda Uncertainties





- Phys.Rev.D 107 (2023) 7, 072004
- KOS and lambdas on carbon at 120 GeV/c





- Phys.Rev.D 108 (2023), 072013
- K+/-, protons, and antiprotons on carbon at 120 GeV/c