Neutrino-Electron Scattering Flux Constraint with MINERvA

Luis Zazueta lazazuet@syr.edu NUINT 2024

Neutrino-electron elastic scattering

- Cross section known from the Standard Model
 - Small uncertainties on the Cross section
- Approximately four orders of magnitude smaller than the total neutrino CC cross section
- Actually four different cross sections, processes are indistinguishable.
- "Standard candle" for the flux

$$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$
$$\bar{\nu}_{\mu} + e^{-} \rightarrow \bar{\nu}_{\mu} + e^{-}$$
$$\nu_{e} + e^{-} \rightarrow \nu_{e} + e^{-}$$
$$\bar{\nu}_{e} + e^{-} \rightarrow \bar{\nu}_{e} + e^{-}$$

MINERvA

MINUS Near Detector (Muon Spectrometer)

MINERvA@NuMI

MINERvA has use this process successfully to constraint the neutrino flux

- Low energy beam, neutrino and anti-neutrino: Phys.Rev.D 93 (2016) 11, 112007
- Medium energy beam, predominantly neutrino: Phys.Rev.D 100 (2019) 9, 092001
- Medium energy beam, predominantly anti-neutrino, combination: Phys.Rev.D 107 (2023) 1, 012001

v+e scattering at MINERvA

v+e elastic scattering obeys the kinematic constraint

 $E_e \theta_e^2 < 2m_e$

Due to smearing, the optimal cut is < 0.0032 GeV Rad² Essential to reject background

Photon Shower Rejection

dE/dx to separate electron showers from photons

Background is constraint using a fit on four kinematic sidebands

Efficiency correction

8

Electron Energy [GeV]

Measured spectrum

Background subtracted and efficiency corrected Input for the constraint procedure

Uncertainty (%) Source $\bar{\nu}_{\mu}$ -mode ν_{μ} -mode **Uncertainty is** 0.22 0.21 Beam Electron reconstruction 0.20 0.57 dominated by Interaction model 3.74 1.68 1.40 1.40 Detector mass statistics Total systematic 4.06 2.27 4.17 Statistical 5.49 4.75 Total 6.83 $\bar{\nu}_{\mu}$ mode ν_{μ} mode 0.5 0.3 **Total Uncertainty** ······ Statistical **Total Uncertainty** Statistical Beam Detector Mass Beam Detector Mass Fractional Uncertainty Fractional Uncertainty 0.25 **Electron Reconstruction** Interaction Model Electron Reconstruction Interaction Model 0.4 0.2 0.3 0.15 0.2 0.1 0.05 0.1 15 0 10 20 5 5 10 15 20 **Electron Energy (GeV) Electron Energy (GeV)**

Flux reweight

Built a probability distribution for the flux

$$P(M|N_{\nu e \to \nu e}) \propto P(M)P(N_{\nu e \to \nu e}|M)$$

New prediction, given the observed measureme nt a-priori model of the flux: flux simulation

Likelihood of the observed electron energy spectrum given the a-priori flux

Flux reweight

Built a probability distribution for the flux

$$P(M|N_{\nu e \to \nu e}) \propto P(M) P(N_{\nu e \to \nu e}|M)$$

- 1000 flux universes
- Up to this point all 1000 universes are equally valid
- This procedure enhances and suppress the contribution of individual universes according to P(N|M)

Flux reweight

Built a probability distribution for the flux

$$\begin{split} P(M|N_{\nu e \to \nu e}) &\propto P(M) P(N_{\nu e \to \nu e}|M) & \stackrel{\text{100}}{\underset{0}{\longrightarrow}} \\ P(N_{\nu e \to \nu e}|M) &= \frac{1}{(2\pi)^{K/2}} \frac{1}{|\Sigma_{\mathbf{N}}|^{1/2}} e^{-\frac{1}{2}(\mathbf{N} - \mathbf{M})^T \Sigma_{\mathbf{N}}^{-1}(\mathbf{N} - \mathbf{M})} \end{split}$$

800

700

600

500

400 300

200

Central Value

100 Universes

Events

- N is a vector containing the bin content of the measured energy spectrum of given process
- M is the same as N but for the MC prediction
- Σ_{N} is the covariance matrix of the uncertainties of N
- K is the number of bins of the spectrum

This is calculated for each flux universe.

Inverse Muon Decay (IMD)

- Well-predicted cross
 section
- Small sample
 - Kinematic threshold about 11GeV
- Neutrino mainly from Kaon parent
- Directly constrains the flux at high energies

2.5

1.5

0.5 0

3.5

Phys.Rev.D 104 (2021) 9, 092010

Making a constraint with all the measurements

Flux Probability distributions

Spread of the distribution yields the integrated flux uncertainty

Constrained Flux

About 10% reduction on the normalization

Constrained flux uncertainty

Fractional flux uncertainty of integrated flux between 2-20 GeV

	$ar{ u}_{\mu}$ -mode			(%)	$ u_{\mu}$ -mode			(%)
	$\bar{\nu}_{\mu}$	$\bar{ u}_e$	$ u_{\mu}$	$ u_e $	ν_{μ}	$ u_e $	$ar{ u}_{\mu}$	$\bar{ u}_e$
A priori	7.76	7.81	11.1	11.9	7.62	7.52	12.2	11.7
$ u_\mu$ -mode $ u e^-$	6.11	5.81	6.30	8.50	3.90	3.94	8.37	8.68
$ar{ u}_\mu$ -mode $ u e^-$	4.92	4.98	8.07	9.19	5.88	5.68	8.36	8.64
combined νe^-	4.68	4.62	5.56	7.80	3.56	3.58	7.15	7.84
combined $\nu e^- + \mathrm{IMD}$	4.66	4.56	5.20	6.08	3.27	3.22	6.98	7.54

- Neutrino mode: 7.6% to 3.3%
- Antineutrino mode: 7.8% to 4.7%

Summary

- Neutrino-electron scattering successfully constrains the uncertainty of the flux at the MINERvA detector.
 - The constraint will reduce the flux uncertainty on future cross-section measurements from MINERvA.
- Statistics, electron identification and angular resolution are crucial
- Neutrino-electron scattering is a major design drivers for DUNE Near Detector

DUNE ND Conceptual Design Report: arXiv:2103.13910

Table 1.5: ND-M3 capability requirements for ND-LAr.

Label	Description	Specification	Rationale	Ref. Req.
ND-C1.2	Sufficiently large sample of ν -e elastic events identified with high efficiency and low backgrounds	$\sim 2\%$	This is necessary to per- form an adequate $\nu - e$ elastic measurement for the flux measurement.	ND-M3
ND-C1.2.1	Fiducial mass/statistics	$>2500~{\rm ev/yr}$	ND-LAr must collect suf- ficient statistics to allow $< 2\%$ statistical uncer- tainty in the measurement	ND-M3
ND-C1.2.2	$\nu-e$ identification		ND-LAr must be able to distinguish the outgoing electron from other particles (μ, γ, π^0)	ND-M3
ND-C1.2.3	Electron energy resolu- tion	5%	Energy resolution is needed to identify the forward $\nu - e$ events.	ND-M3
ND-C1.2.4	Electron angular resolu- tion	$\begin{array}{l} {\rm core}{<} 5 \; {\rm mrad}, \\ {\rm tail}{<} 12 \; {\rm mrad} \\ {\rm for} \; E_e > 2 \; {\rm GeV} \end{array}$	A tight cut on forward electrons is needed to identify $\nu - e$ events	ND-M3
ND-C1.2.5	Vertex activity thresh- old	20 MeV	Identifying vertex activ- ity is necessary to reject backgrounds	ND-M3

Modification to GENIE in this analysis

Modifications to GENIE simulation relevant to this analysis.

- Radiative correction to v+e \rightarrow v+e cross section
 - Based on S. Tomalak et al, Phys.Rev.D 101 (2020) 3, 033006
- Weak charge screening Random Phase Approximation (RPA)
 - Suppresses the Quasi-elastic cross section at low momentum transfer
- Interaction with correlated pairs "two particle-two holes" (2p2h)
 - Based on the Valencia model PRC 70, 055503 (2004); PRC 83, 045501 (2011)
 - Added to GENIE. Data suggest an enhancement to model.

Flux uncertainties

- Uncertainty from hadron production at the target and focusing parameters
- Predicted by simulation of the beamline
- Hadron production is constrained using external data
 - Reduce the fractional uncertainty to ~8%

Hadron Production data

The simulations are tuned using external measurement from hadron production data

- Tabulate the hadronic cascade at generation with all kinematic information and store in the flux tuples
- MC interactions are weighted to the measured cross section.
- The beam attenuation in target (and other materials) is also corrected.
- Assign and propagate uncertainties.

Constraining of the background using sidebands

- Make four background samples on the dE/dx - EΘ² plane
- Let the normalization of the background templates float in a chi-squared minimization
- Apply the normalization from the fit of the sideband regions to the background on the signal region

Constraining of the background using sidebands SB1 - Shower + Vertex

Tuning parameters: Normalization of

- v background
- v_{μ} except coherent NC

0.112

0.005

Signal

E0² (GeV rad²)

 Coherent NC in six bins of electron energy

Sidebands 1,2,3

4.5 dE/dx, (MeV/1.7cm)

Sideband 4

10

SB1 - Shower + Vertex activity SB2 - ν_{μ} enriched SB3 - ν_{e} enriched SB4 - π^{0} enriched

Change normalization following a Chi-square minimization

Efficiency correction

How many v+e events do we miss? Estimate using simulation

Radiative Corrections

GENIE tree-level cross-section reweighted to match the one calculated including radiative corrections from O. Tomalak, R. J. Hill. Phys. Rev. D 101, 033006 (2020)

• Includes production of real photons in final state

Ratio between Phys. Rev. D 101, 033006 (2020) x-secs and GENIE 2.12.6.

Make a covariance matrix

The pertinent systematics error are correlated between measurements

- The GENIE uncertainties
- Specific uncertainties share by the two v+e elastic measurements

Make a covariance matrix

Dominant error is statistical

• Effect of correlations end up being really small

Statistical and systematic errors

Constrained flux uncertainty

Fractional flux uncertainty of integrated flux between 2-20 GeV

	$\bar{ u}_{\mu}$ -mode		(%)	$ u_{\mu}$ -mode		de	(%)	
	$\bar{ u}_{\mu}$	$\bar{ u}_e$	$ u_{\mu}$	$ u_e $	ν_{μ}	$ u_e $	$ar{ u}_{\mu}$	$\bar{ u}_e$
A priori	7.76	7.81	11.1	11.9	7.62	7.52	12.2	11.7
$ u_\mu$ -mode $ u e^-$	6.11	5.81	6.30	8.50	3.90	3.94	8.37	8.68
$ar{ u}_{\mu}$ -mode $ u e^-$	4.92	4.98	8.07	9.19	5.88	5.68	8.36	8.64
combined νe^-	4.68	4.62	5.56	7.80	3.56	3.58	7.15	7.84
combined $\nu e^- + {\rm IMD}$	4.66	4.56	5.20	6.08	3.27	3.22	6.98	7.54

- Constraints from one data set works better for that data
- Combination is better compared to individual, particularly on wrong-sign component
- IMD mostly improves muon neutrino flux and wrong-sign

