Short-range correlations with the generalized contact formalism

Ronen Weiss

Los Alamos National Lab

NUINT 2024, Sao Paulo, April 16, 2024

LA-UR-24-22886

Short-range correlations (SRCs)

What happens when few particles get close to each other?

One-body Momentum Distribution

Two-body Relative Density

Solving the many-body problem

Effects of short-range correlations (SRCs)

- Significant deviations from mean-field models
- Challenge for the description of quantum systems

Short-range correlations (SRCs)

Studied in different systems:

J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010)

B. Bazak, M. Valiente, N. Barnea, PRA 101, 010501 (2020)

Short-range correlations (SRCs) Main features:

- High momentum particles with back-to-back configuration
- Universal behavior "isolated pair"
- Neutron-proton dominance

Short-range correlations (SRCs) Main features:

- High momentum particles with back-to-back configuration
- Universal behavior "isolated pair"
- Neutron-proton dominance

How can we explain these features?

How can we utilize information regarding SRCs for the description of the whole system?

The Generalized Contact Formalism (GCF)

RW, B. Bazak, N. Barnea

Generalized Contact Formalism

• Generalizing Tan's work for dilute systems

S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)

• Starting point – Short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

Universal function (but depends on the potential)

Nucleus-dependent function

 $\varphi(r) \equiv$ Zero-energy solution of the **two-body** Schrodinger Eq.

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

Generalized Contact Formalism

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$
universal

function

For any **short-range** two-body operator \hat{O}

- Two-body dynamics
- Universal for all nuclei
- Simply calculated
- RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

- The "contact"
- Number of correlated pairs
- Depends on the nucleus
- Independent of the operator

Generalized Contact Formalism

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$
universal
function

For any **short-range** two-body operator \hat{O}

$$\langle \hat{O} \rangle = \langle \varphi | \hat{O}(r) | \varphi \rangle C \qquad C \propto \langle A | A \rangle$$

The nuclear contact relations

RW, B. Bazak, N. Barnea,

PRC 92, 054311 (2015)

A. Schmidt, J.R. Pybus, RW, et 20) al., Nature 578, 540 (2020)

 $\rho_{NN}(\mathbf{r}) \xrightarrow{\mathbf{r} \to \mathbf{0}} \mathbf{C} |\varphi(\mathbf{r})|^2$

Two-body density

Shows the validity of the factorization

R. Cruz-Torres, D. Lonardoni, RW, et al., Nature Physics (2020)

Two-body momentum distribution

One-body momentum distribution $n_p(k) \xrightarrow[k \to \infty]{} C_{pn}^1 |\varphi_{pn}^d(k)|^2 + C_{pn}^0 |\varphi_{pn}^0(k)|^2 + 2C_{pp}^0 |\varphi_{pp}^0(k)|^2$

- *s*-wave contributions
- All NN pairs

No fitting parameters!

RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

Electron-scattering experiments

- A(e, e'N) and A(e, e'NN) cross sections
- S(p₁, ε₁) = spectral function
 The probability to find nucleon with momentum
 p₁ and energy ε₁ in the nucleus

• Using the GCF:

$$S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = \boldsymbol{C_{pn}^{1}} S_{pn}^{1}(\boldsymbol{p_{1}}, \epsilon_{1}) + \boldsymbol{C_{pn}^{0}} S_{pn}^{0}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2\boldsymbol{C_{pp}^{0}} S_{pp}^{0}(\boldsymbol{p_{1}}, \epsilon_{1})$$

 $(p_1 > k_F)$

RW, I. Korover, E. Piasetzky, O. Hen and N. Barnea, PLB 791, 242 (2019)

Electron-scattering experiments

• Good description of experimental data:

Analyzing and designing experiments

I. Korover et al., PLB 820, 136523 (2021) J.R. Pybus et al., PLB 805, 135429 (2020)

Analyzing and designing experiments

I. Korover et al., PLB 820, 136523 (2021) J.R. Pybus et al., PLB 805, 135429 (2020)

Towards a systematic short-range description

Corrections to the GCF

• GCF is based on the short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

- Begins to fail at larger distances
- Possible corrections:
 - Three-body correlations
 - Pairs at larger distances

Systematic short-range expansion for SRC pairs:

Beyond factorization

RW, D. Lonardoni, S. Gandolfi, arXiv:2307.05910 [nucl-th] (2023)

Short-range expansion

• Factorization for short distances

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

- $\varphi(r) \equiv$ **Zero-energy** solution of the two-body Schrodinger Eq.
- The two-body system:

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi^E(r) = E\varphi^E(r)$$

• For $r \to 0$: The energy becomes negligible

• For $r \rightarrow 0$:

$$\varphi^{E}(r) = \varphi^{E=0}(r) + \cdots$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

• For $r \rightarrow 0$:

$$\varphi^E(r) = \varphi^{E=0}(r) + \cdots$$

• Taylor expansion around E = 0:

• The many-body case: Two-body density

Leading order: $\rho_2(r) = \left|\varphi_{\ell=0}^{E=0}(r)\right|^2 C$ (zero energy, s-wave)

• The many-body case: Two-body density

Leading order: $\rho_2(r) = \left|\varphi_{\ell=0}^{E=0}(r)\right|^2 C$ (zero energy, s-wave)

Expansion: (energy derivatives, $\ell > 0$ contributions)

$$\rho_{2}(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

• The many-body case: Two-body density

Leading order: $\rho_2(r) = \left| \varphi_{\ell=0}^{E=0}(r) \right|^2 C$ (zero energy, s-wave)

Expansion: (energy derivatives, $\ell > 0$ contributions)

$$\rho_{2}(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

- Power counting is needed
 - Can be analyzed analytically for the two-body system

$$\varphi_{2}(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

• Neutron matter:

AFDMC by Diego Lonardoni & Stefano Gandolfi: AV4'+UIX_C $n = 0.16 \text{ fm}^{-3}$

5 fitting parameters at N²LO

Power counting analyzed analytically for the two-body system

Momentum distribution

No fitting parameters!

Three-body correlations are needed for finite nuclei

Three-body correlations

RW and S. Gandolfi, Phys. Rev. C 108, L021301 (2023)

Three-body correlations

Various open questions:

- What are the **dominant configurations**?
- Are 3N SRCs sensitive to the **three-body force**?
- Are they **universal**? What is their **abundance**?
- What is their **contribution to different observables**?

Three-body correlations

Various open questions:

- What are the **dominant configurations**?
- Are 3N SRCs sensitive to the **three-body force**?
- Are they **universal**? What is their **abundance**?
- What is their **contribution to different observables**?

We performed first ab-initio calculations of 3N SRC

$$\rho_3(r_{12}, r_{13}, r_{23}) \equiv \binom{A}{3} \langle \Psi | \delta(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) \delta(|\mathbf{r}_1 - \mathbf{r}_3| - r_{13}) \delta(|\mathbf{r}_2 - \mathbf{r}_3| - r_{23}) | \Psi \rangle$$

Three-body density

Universality

Three-body density

Universality

universal function

Describing more general quantities

Matching to long-range model

Fitting only the LO contact and matching to FG:

Neutrinoless double beta decay

QMC + Shell-Model + GCF

more quantities!

Significant reduction due to SRCs

Summary and outlook

Summary

- Nuclear short-range correlations beyond mean-field effects
- Generalized Contact Formalism: $\Psi(r_1, r_2, ..., r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$
 - Consistent and comprehensive description of short-range correlated pairs at leading order
 - Accurate description of large-momentum transfer electron scattering reactions
- Short-range expansion:
 - Systematic framework with organized subleading contributions
 - Valid for larger distances / lower momenta
 - Various observables can be described (kinetic and potential energy, $0\nu\beta\beta,...$)
- 3N SRCs

Future plans

• Formalism development:

- Including **3N SRCs** in systematic expansion
- Improving methods to **extract contact values**
- Improving description of **reactions**: final state interactions, relativistic effects...
- Matching with long-range models
- Imbedding SRC knowledge in **ab-initio methods**

Future plans

• Formalism development:

- Including **3N SRCs** in systematic expansion
- Improving methods to **extract contact values**
- Improving description of **reactions**: final state interactions, relativistic effects...
- Matching with long-range models
- Imbedding SRC knowledge in **ab-initio methods**
- Applications: Neutrino-nucleus scattering
 - Comparing to **experimental data**
 - Extraction of relevant contact values
 - Combination with JLab Ar spectral function analysis

- Matching with low-momentum approaches
- Event generators?

Future plans

• Formalism development:

- Including **3N SRCs** in systematic expansion
- Improving methods to **extract contact values**
- Improving description of **reactions**: final state interactions, relativistic effects...
- Matching with long-range models
- Imbedding SRC knowledge in **ab-initio methods**
- Applications:
 - Beta decay rates, magnetic moments...
 - $0\nu\beta\beta$ matrix elements
 - Guiding the **detection of 3N SRCs**

- Testing nuclear three-body forces
- Design and analysis of exp (JLab, GSI, EIC)
- Liquid ⁴He structure factor, Dipolar excitons

BACKUP

The spectral function

$$S(\boldsymbol{p_1}, \boldsymbol{\epsilon_1}) = \sum_{s} \sum_{f_{A-1}} \delta(\boldsymbol{\epsilon_1} + E_f^{A-1} - E_0) \left| \left\langle f_{A-1} \middle| a_{\boldsymbol{p_1}, s} \middle| \boldsymbol{\psi_0} \right\rangle \right|^2$$

The initial wave function

$$\boldsymbol{\psi}_{0} \rightarrow \sum_{\alpha} \varphi_{ij}^{\alpha} (\boldsymbol{r}_{ij}) A_{ij}^{\alpha} (\boldsymbol{R}_{ij}, \{\boldsymbol{r}_{k}\}_{k \neq i, j})$$

The final wave function

$$|\psi_f^{12}\rangle = a_{p_1,s}^{\dagger}|f_{A-1}\rangle \propto |\Psi_v^{A-2}\rangle e^{ip_1 \cdot r_1 + ip_2 \cdot r_2} \chi_{s_1} \chi_{s_2}$$

Energy
conservation:
$$E_f^{A-1} = \epsilon_2 + (A-2)m - B_f^{A-2} + \frac{P_{12}^2}{2m(A-2)}$$
$$B_f^{A-2} \approx \langle B_f^{A-2} \rangle$$

The spectral function

$$p_1 > k_F$$

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

$$S_{ab}^{\alpha}(\boldsymbol{p_1}, \epsilon_1) = \frac{1}{4\pi} \int \frac{d^3 p_2}{(2\pi)^3} \delta(f(\boldsymbol{p_2})) n_{CM}(\boldsymbol{p_1} + \boldsymbol{p_2}) |\tilde{\varphi}_{ab}^{\alpha}(|\boldsymbol{p_1} - \boldsymbol{p_2}|/2)|^2$$

Energy CM momentum Two-body conservation distribution function (Gaussian)

Similar to the convolution model

C. Ciofi degli Atti, S. Simula, L. L. Frankfurt, and M. I. Strikman, Phys. Rev. C 44, R7(R) (1991), C. Ciofi degli Atti and S. Simula PRC 53, 1689 (1996)

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

AV4' Deuteron channel Bound state

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{A}) = \sum_{E, \alpha} \varphi_{\alpha}^{E}(\boldsymbol{r}_{12}) A_{\alpha}^{E}(\boldsymbol{R}_{12}, \boldsymbol{r}_{3}, \dots, \boldsymbol{r}_{A}) \qquad (\alpha - \text{quantum numbers})$$
Complete set of

two-body functions

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{E, \alpha} \varphi_{\alpha}^E(\boldsymbol{r}_{12}) A_{\alpha}^E(\boldsymbol{R}_{12}, \boldsymbol{r}_3, \dots, \boldsymbol{r}_A) \qquad (\alpha - \text{quantum numbers})$$

• Taylor expansion around E = 0:

$$\varphi_{\alpha}^{E}(\mathbf{r}) = \varphi_{\alpha}^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

GCF factorization

Subleading terms

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

• The many-body case:

$$\Psi(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\ldots,\boldsymbol{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\boldsymbol{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\boldsymbol{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\boldsymbol{r})\right)A_{\alpha}^{(2)} + \cdots$$

• Two-body density:

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

• Subleading contacts:

$$C^{mn}_{\alpha} \propto \langle A^{(m)}_{\alpha} | A^{(n)}_{\alpha} \rangle$$

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

- **Power counting** is needed
- Two relevant parameters:
 - Number of energy derivatives
 - Orbital angular momentum (*s*, *p*, *d*, ...)
- Can be analyzed analytically for the two-body system

Short-range expansion: Next order terms

The many-body case:

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

$$A_{\alpha}^{(0)}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A}) = \sum_{E} A_{\alpha}^{E}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A})$$

$$A_{\alpha}^{(1)}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A}) = \sum_{E} E A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A})$$

$$A_{\alpha}^{(2)}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A}) = \frac{1}{2!} \sum_{E} E^{2} A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A})$$

Short-range expansion $\rho_{2}(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$

• Neutron matter:

AFDMC by Diego Lonardoni & Stefano Gandolfi: AV4' $n = 0.16 \text{ fm}^{-3}$

Three-body correlations

- There is no clear experimental signal of 3N SRCs in nuclear systems.
- But significant experimental efforts

Three-body correlations

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(x_{12}, x_{123}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

• A **single** leading channel:

$$j^{\pi} = \frac{1}{2}^{+}$$
, $t = \frac{1}{2}$

- The same quantum numbers as 3 He
- Therefore, at short-distances we expect:
 - T = 1/2 dominance (over T = 3/2)
 - Universality All nuclei should behave like ³He

Three-body density

Ab-initio calculations – AFDMC (with Stefano Gandolfi):

$$\rho_3(r_{12}, r_{13}, r_{23}) \equiv \binom{A}{3} \langle \Psi | \delta(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) \delta(|\mathbf{r}_1 - \mathbf{r}_3| - r_{13}) \delta(|\mathbf{r}_2 - \mathbf{r}_3| - r_{23}) | \Psi \rangle$$

- Projections to $T = \frac{1}{2}$ and $T = \frac{3}{2}$
- N2LO(R = 1.0 fm)E1 local chiral interaction
- Nuclei: ³He, ⁴He, ⁶Li, , ¹⁶O

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Can be compared to inclusive cross section ratios (in the appropriate kinematics)

$$a_{3}(A) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^{3}He} + \sigma_{e^{3}H})/2}$$

For a symmetric nucleus A

$$a_3(A) = \frac{3}{A} \frac{C(A)}{C(^3\text{He})}$$

Sensitivity to three-body forces

r

Results – light nuclei (AV18)

Using ⁶He \rightarrow ⁶Be and ¹⁰Be \rightarrow ¹⁰C to "predict" ¹²Be \rightarrow ¹²C

Short distances - GCF

Long distances – Shell model

Results – heavy nuclei (AV18)

• Transition densities of heavy nuclei:

Model independence of contact ratios

• For $0\nu 2\beta$:

$$\frac{C^{AV18}(f_1, i_1)}{C^{AV18}(f_2, i_2)} = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)}$$

$$C^{AV18}(f_1, i_1) = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)} C^{AV18}(f_2, i_2)$$

• For example $C^{AV18}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se}) = \frac{C^{SM}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se})}{C^{SM}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})}C^{AV18}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})$ Exact QMC calculations

SRCs in Nuclear Systems

Studied experimentally using large momentum transfer quasi-elastic reactions

Generalized Contact Formalism

Main channels for nuclear systems:

The **spin-one** channel: $\ell_2 = 0,2$; $s_2 = 1$; $j_2 = 1$; $t_2 = 0$ (only **np pairs**)

The **spin-zero** channel: $\ell_2 = 0$; $s_2 = 0$; $j_2 = 0$; $t_2 = 1$ (All pairs)

Generalized Contact Formalism

Some features can be explained using:

- RG arguments S. K. Bogner and D. Roscher, Phys. Rev. C 86, 064304 (2012). A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C 104, 034311 (2021)
- Coupled Cluster expansion S. Beck, RW, N. Barnea, Phys. Rev. C 107, 064306 (2023) S. Beck, RW, N. Barnea, arXiv:2305.17649 [nucl-th] (2023)

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

R. Cruz-Torres, D. Lonardoni, RW, et al., Nature Physics (2020)

Nuclear photoabsorption

RW, *B. Bazak*, *N. Barnea*, *PRL* 114, 012501 (2015) ; *PRC* 92, 054311 (2015)

The Contact Theory

- Dilute systems with **negligible interaction range**
- Zero-range condition:

• Zero-range model: Non-interacting particles with boundary condition

Independent of the details of the interaction

$$\Psi(r_1, r_2, \dots, r_N) \xrightarrow{r_{12} \to 0} \left(\frac{1}{r_{12}} - \frac{1}{a}\right) \times A(\mathbf{R}_{12}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$
The Contact Theory

$$\Psi(r_1, r_2, \dots, r_N) \xrightarrow{r_{12} \to 0} \left(\frac{1}{r_{12}} - \frac{1}{a}\right) \times A(\mathbf{R}_{12}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

• A parameter – **the contact** – can be defined:

 $\boldsymbol{C} \propto \langle A | A \rangle$

. . .

- $C \approx$ number of SRC pairs in the system
- Connected to many quantities in the system

$$n(k) \xrightarrow{k \to \infty} C/k^4$$
$$T + U = \frac{\hbar^2}{4\pi ma} C + \sum_{\sigma} \frac{d^3k}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(k) - \frac{C}{k^4} \right)$$

The Contact Theory

• Verified experimentally: (ultra-cold atomic systems)

J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010)