

$v_{\mu} \, CC0\pi$ interactions with one or more protons in MicroBooNE

arXiv:2403.19574

Steven Gardiner (<u>gardiner@fnal.gov</u>) Nulnt 2024, Instituto Principia, São Paulo 17 April 2024

Relationship to other recent MicroBooNE results

- v_{μ} CCO**\piNp** (for N \geq 1)
- More inclusive than 1p analysis
 - Previous talk by Andy Furmanski -
 - Poster by Afro Papadopoulou -
 - arXiv:2310.06082
- More exclusive than simultaneous **OpNp** measurements
 - Poster by Ben Bogart -
 - arXiv:2402.19281 and arXiv:2402.19216

2.5

2.0

arXiv:2402.19281

µBooNE tune: 18.5 / 15

GENIE: 15.8/15

NuWro: 20.5/15

MicroBooNE 6.369 × 10^{20} POT: v_uCC Xp

+

Data

GiBUU: 13.4 / 15

NEUT: 21.4/15

Previous v_{μ} CC0 π Np cross sections from MicroBooNE

- First v-Ar single-differential results
 - 5 observables, 5 distributions, 43 bins
 - 0.3 GeV/c proton threshold
 - 1.6 × 10²⁰ protons-on-target (POT)
- Many improvements since then
 - Over 4x more data (6.79 × 10²⁰ POT)
 - Log-likelihood particle ID: JHEP 2021, 153
 - Improved understanding of detector response: <u>Eur. Phys. J C 82, 454 (2022)</u>
 - Tuned neutrino interaction model: <u>Phys.</u> <u>Rev. D 105, 072001 (2022)</u>

🛠 Fermilab

Current v_{μ} CC0 π Np measurements

- We can now report much more detail
- 10 observables, 14 distributions, 359 bins
- 2D and 1D results
- 0.25 GeV/c proton threshold
- Statistical and systematic correlations between all data points

Signal definition

- v_µ CC on Ar, at least one final-state proton
- Zero (anti)mesons
- $p_{\mu} \in [0.1, 1.2] \text{ GeV/c}$
- pp ∈ [0.25, 1.0] GeV/c
- Restricted phase space motivation similar to 1p analysis
- The pp limit only applies to the leading proton

This 4p (!) candidate event is selected

Fermilab

Event selection

- Implemented using automated Pandora reconstruction
- Series of 12 cuts:
 - Find a v-induced µ
 - that is well-reconstructed
 - and accompanied only by p
- Overall performance
 - 12.3% efficiency
 - 78.5% purity

😤 Fermilab

Data/MC comparisons

- Agreement reasonable within uncertainties $(\chi^2 = 355 / 359 \text{ bins})$
- 3 dominant backgrounds:
 - Out of Fiducial Volume (Out FV)
 - Neutral-current (NC)
 - **Pion production** (v_{μ} CCN π)
- Alternate selections made to enhance each, check background prediction

 $0.30 \text{ GeV} \le \delta p_T < 0.40 \text{ GeV}$

🚰 Fermilab

Sideband test of background model

- Logical OR of 3 alternate selections plotted for 359 bins
- Out FV and NC important at low p_p, π production at high p_p
- Satisfactory agreement everywhere in phase space $(\chi^2 = 178 / 359 \text{ bins})$
- GENIE-based model used
 unaltered
- Full sideband results in supplement and data release

Unfolding

- D'Agostini method used for each of 14 blocks of bins
 - 2-5 iterations depending on specific distribution
 - Validated with mock data
- Additional smearing matrix
 - "Ac" introduced in Wiener-SVD method
 - Supplied here in data release for new model comparisons

Second bin number

Inter-distribution correlations

- "Covariance matrix per histogram" is standard practice in data releases
- Experiments can calculate correlations *between* histograms, hard to guess / retrieve later
 - Both systematic and statistical
- When omitted, limits validity of goodness-of-fit
 - See fitting study by MINERvA

Inter-distribution correlations

- "Blockwise unfolding" technique for reporting this information
- Premiere in this analysis, see also Ben Bogart's poster and talk
- Allows valid χ² comparisons to entire data set, boosting model discrimination power
- See supplemental materials and data release

"Cookbook" for reporting these correlations in other experiments: <u>arXiv:2401.04065</u>

FERMILAB-PUB-23-692-CSAID

Mathematical methods for neutrino cross-section extraction

Steven Gardiner* Fermi National Accelerator Laboratory, Batavia, Illinois 60510 USA (Dated: January 9, 2024)

Precise modeling of neutrino-nucleous scattering is becoming increasingly important as acceleratorbased oscillation experiments seek definitive answers to open questions about neutrino properties. To guide the needed model refinements, a growing number of experimental collaborations are pursuing a wide-ranging program of neutrino interaction measurements at GeV energies. A key step in most such analyses is cross-scelion extraction, in which measured event counts are corrected for background contamination and imperfect detector performance to yield cross-section results that are directly comparable to theoretical predictions. In this paper, I review the major approaches to crosssection extraction in the literature using representative examples from the MINERVA, MicroBooNE, and T2K experiments. I then present two mathematical techniques, blockwise unfolding and the conditional covariance background constraint, which overcome some limitations of typical crosssection procedures.

Total correlation matrix for final CC0πNp cross sections

Physics highlights: missing strength

- Data prefer higher cross section in certain phase-space regions
- Example: moderate to backward θ_μ, moderate p_μ
- Similar trends seen in other recent MicroBooNE measurements

	MicroBooNE 6.79×10^{20} POT		
ath	♦ BNB data	Norm unc.	
igui	•••• GENIE 2.12.10	65.5/44	
	GENIE 3.0.6	44.6/44	
	GiBUU 2021.1	8.67/44	
	NEUT 5.6.0	17.1/44	
	NuWro 19.02.2	50.6/44	
	MicroBooNE Tune	60.0/44	
	• • GENIE 3.2.0 G18_02a	79.0/44	
	•••• GENIE 3.2.0 G21_11b	67.9/44	
$0.30 \text{ GeV} \leq 0.30 \text{ GeV} = 0.30$	$p_{\mu} < 0.38 \text{ GeV}$		
$\cos heta_{\mu}$			
	犬 Ea	rmiloh	

Physics highlights: missing strength

- Data prefer higher cross section in certain phase-space regions
- Example: moderate to backward θ_μ, moderate p_μ
- Similar trends seen in other recent MicroBooNE measurements

MicroBooNE 6.79×10^{20} POT		
✦ BNB data	Norm unc.	
•••• GENIE 2.12.10	21.6/26	
GENIE 3.0.6	17.8/26	
GiBUU 2021.1	6.10/26	
— NEUT 5.6.0	7.74/26	
— NuWro 19.02.2	21.7/26	
MicroBooNE Tune	16.7/26	
• • GENIE 3.2.0 G18_02a	a $22.3/26$	
•••• GENIE 3.2.0 G21 111	9.59/26	

Physics highlights: θµp shape

- Hint from prior CC0πNp analysis
- Coarse binning, but models seem to be peaking to the left of data
- Distribution sensitive to QE / 2p2h balance

Physics highlights: θµp shape

- Hint from prior $CC0\pi Np$ analysis
- Coarse binning, but models seem to be peaking to the left of data
- Distribution sensitive to QE / 2p2h balance
- New analysis achieves much more detailed look

Physics highlights: θ_{µp} shape

- Hint from prior $CC0\pi Np$ analysis
- Coarse binning, but models seem to be peaking to the left of data
- Distribution sensitive to QE / 2p2h balance
- **GiBUU** and **NEUT** models peak further right and are favored

Physics highlights: θ_{µp} shape

- Hint from prior $CC0\pi Np$ analysis
- Coarse binning, but models seem to be peaking to the left of data
- Distribution sensitive to QE / 2p2h balance
- **GiBUU** and **NEUT** models peak further right and are favored

GiBUU does particularly well in the moderate pn slice (2D)

Physics highlights: overall performance

- Universal room for improvement in comparisons to full data set
- MicroBooNE Tune model uncertainty shown for comparisons in supplement
 - Agreement improves somewhat $(\chi^2 = 979 / 359 \text{ bins})$
 - Correlations with data systematics included in calculation
- Extended data release includes all details

Model	χ^2 / 359 bins
GENIE 3.0.6	1859
NEUT 5.6.0	2582
MicroBooNE Tune	2673
GENIE 3.2.0 G21_11b	2947
GiBUU 2021.1	4836
NuWro 19.02.1	5315
GENIE 3.2.0 G18_02a	5724
GENIE 2.12.10	7799

18 17 Apr 2024 S. Gardiner | ν_μ CC0π interactions with one or more protons in MicroBooNE

"Showing our work" in the supplement

- Basic data release
 - Cross-section results, MicroBooNE flux
 - Overall and partial covariance matrices
 - A_c and example scripts for model comparisons
- Extended data release
 - All information needed to revisit unfolding, uncertainty propagation
 - Stat covariances and systematic universes
 - Script to re-generate covariances between signal bins, sidebands, and the MicroBooNE Tune prediction

Access Paper:

View PDF

(CC) BY

- TeX Source
- Other Formats

view license

Ancillary files (details):

- basic_data_release/calc_chi2.C
- basic_data_release/calc_chi2.py
- basic_data_release/ mat_table_add_smear.txt
- basic_data_release/ mat_table_cov_NuWroGenie.txt
- basic_data_release/ mat_table_cov_detVar_total.txt (19 additional files not shown)

Conclusion

- The **new v_{\mu} CC0\piNp data from MicroBooNE are highly detailed**
 - 10 observables, 14 differential cross sections, 359 bins
- Complementary to our other recent results looking at protons
 - Exclusive 1p (Andy Furmanski's talk), Inclusive 0pNp (Ben Bogart's poster)
- "Blockwise unfolding" provides stringent test of models
 - Work in progress to extend to inter-analysis correlated uncertainties
- Coming to NUISANCE soon, basic and extended data releases available in supplemental materials (<u>arXiv:2403.19574</u>)
- This is still only about half our data, stay tuned for much more from MicroBooNE!

🔁 Fermilab

Thank you!

21 17 Apr 2024 S. Gardiner | v_{μ} CC0 π interactions with one or more protons in MicroBooNE

22 17 Apr 2024 S. Gardiner | v_{μ} CC0 π interactions with one or more protons in MicroBooNE

Uncertainties

- Systematic variations nearly the same as 1p analysis
- **Out-of-cryostat:** no extra uncertainty, model checked in a sideband study instead
- Recombination model for ionization electrons dominates detector uncertainty (3.3%)

23

Fermilab