Neutrino Interaction Physics at SBND - Status and Plans for v_{μ} CC 0π Cross Section -

Mun Jung Jung, on behalf of the SBND Collaboration NuINT 2024, São Paulo, Brazil April 17th, 2024

SBND

DETE

The Short-Baseline Near Detector (SBND)

- SBND physics goals
 - measure neutrino-argon interaction cross sections at the few GeV neutrino energy range
 - contribute to oscillation analyses as part of the SBN program
 - search for new physics and study rare processes

The Short-Baseline Near Detector (SBND)

SBND physics goals

measure neutrino-argon interaction cross sections at the few GeV neutrino energy range

- contribute to oscillation analyses as part of the SBN program
- search for new physics and study rare processes

REGION

DEEP INELASTIC SCATTERING

energy transfer

Joanna Sobczvk

Neutrino Interactions at SBND

RESONANCE

 $\frac{Q^2}{M_N} + M_{\pi}$

REGION

BNB/SBND

QUASI-ELASTIC

PFAK

 $\frac{Q^2}{M_N}$

ELASTIC

SCATTERING

 $\frac{Q^2}{M_A}$

GIANT

RESONANCES

σ

- SBND covers a critical energy region in advancing our understanding of neutrino-nucleus interactions
 - Neutrino scattering on heavy targets like argon at the few-GeV neutrino energy range is complex

SBN ν_{μ} CC 0π Measurements

- Multiple neutrino-nucleus interaction measurements highlighted in previous talks
- SBND has unique capabilities to address the current challenges and decrease the statistical and systematic uncertainties on measurements

Capabilities of SBND

M. Jung | NuINT 2024 | April 18, 2024

1. High-Statistics Dataset

- SBND will collect the world's largest neutrino-argon interaction dataset
 - over 7000 neutrino interactions per day, 10-20 times more neutrino-argon scattering data than what is currently available over the lifetime of SBND
 - enable thorough investigation of the more dominant channels, as well as studies of rare processes
 - Will provide the neutrino theory/generator community and future experiments with essential input

1. High-Statistics Dataset

- SBND interaction phase space has large overlap with the DUNE phase space
 - spans both first and second oscillation maxima
 - covers 95% of DUNE phase space with very high statistics

2. Off-axis Flux Effect (SBND-PRISM)

- Booster Neutrino Beam (BNB)
 - 8GeV proton on beryllium target
 - mean neutrino energy ~800 MeV
- Beam composition
 - 93.6% *υ*_μ
 - 5.9% υ_μ
 - 0.5% $v_e + \overline{v_e}$

ē

→ *V*

2. Off-axis Flux Effect (SBND-PRISM)

- Off-axis neutrino spectra differ from the on-axis spectrum
- SBND volume spans up to ~1.5 degrees off-axis
 - SBND is very close to the neutrino source, and sits slightly off-centered with respect to the BNB axis

2. Off-axis Flux Effect (SBND-PRISM)

- Spectra peaks cover a narrow but interesting energy range
- Infer neutrino energy dependence by sampling different detector volumes
 - recent T2K analysis using both near detectors: <u>Phys. Rev. D 108</u>, 112009

highlighted at Stephen Dolan's talk

• treat different volumes of SBND as different detectors

3.0

3. Detector Capabilities: TPC

- As fully active tracking calorimeters, LArTPCs enable detailed reconstruction of complicated neutrino interactions
 - resolve complicated final states with low reconstruction threshold
 - efficient particle identification

Anode wire planes

3. Detector Capabilities: TPC

• 2 TPCs with a shared central cathode and two anode readout planes • 3 wire planes, wire spacing 3mm CRT • 500V/cm electric field provided by the shared central cathode and the field cage • TPB coated cathode panels shift light from VUV to visible range 400cm 200cm

3. Detector Capabilities: PDS & CRT

- Photon detection system (PDS)
 - 312 total photon sensors: 120 PMTs (sensitive to both VUV and visible light) & 192 X-ARAPUCAs
 - ns timing resolution resolves the beam structure, providing efficient cosmic removal for neutrino analyses and beam removal for exotic searches
- Cosmic ray tagger (CRT)
 - 4π coverage to tag cosmic activity

M. Jung | NuINT 2024 | April 17, 2024

3. Detector Capabilities: PDS & CRT

- Photon detection system (PDS)
 - 312 total photon sensors: 120 PMTs (sensitive to both VUV and visible light) & 192 X-ARAPUCAs
 - ns timing resolution resolves the beam structure, providing efficient cosmic removal for neutrino analyses and beam removal for exotic searches
- Cosmic ray tagger (CRT)
 - 4π coverage to tag cosmic activity

4. Reconstruction Capabilities

- SBND will use multiple advanced reconstruction software packages
 - Pandora is the standard reconstruction package for many LArTPC experiments
 - many complementary tools for specific tasks are being developed

- Proton tracking threshold ~40 MeV by the standard pandora tracking using topology information
- Proton identification threshold can be pushed down to ~15 MeV by using calorimetry information (looking for large ionization deposits near the vertex)

SBND Status

Now entering the commissioning & calibration phase

Stay tuned for updates at the summer conferences!

Cross Section Physics at SBND

M. Jung | NuINT 2024 | April 18, 2024

M. Jung | NuINT 2024 | April 17, 2024

GiBUU (2021)

2

Reconstructed muon momentum (GeV/c)

Selected v CC1p0^{±/o} Candidat

...CC 0p 0π^{±/0}

CC 1p 0π^{±/0}

CC $1\pi^{\pm} 0\pi^{\circ}$

.CC 1^{n°}

CC Other

CC Np 0^{±/o} (N>1)

SBND Simulation I Work in Progress

Event Generators at SBND

GENIE (G18_10a_02_11a)

2

Reconstructed muon momentum (GeV/c)

Selected v CC1p0nt/o Candidate

...CC 0p 0π^{±/α}

CC 1p 0π^{±/c}

CC 1n[±] 0n^c

CC 1n°

CC Other

CC Np 07 1/0 (N>1)

SBND Simulation | Work in Progres

0.12

0.

80.0 **10**50

O.06

Events / Events /

POT

×

- First experiment to use both GENIE and GiBUU as event-by-event generators with systematic uncertainties
- The two generators take different approaches
 - · GENIE combines theoretical models with empirical data

0.12

0

80.0 **10**20

O.06

Events

* the event selection and signal definition is different from the other plots shown in this presentation

0.02

POT

×

GiBUU is based on the nuclear transport model

GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project

Towards v_{μ} CC 0π Cross Section Measurements

- SBND will make high-statistics cross section measurements with low reconstruction energy thresholds
- Target specific v_{μ} CC 0π final state topologies to study the representative interaction modes
 - QE is enhanced in the 1p channel
 - MEC is enhanced in the 2p channel

 ν_{μ} CC 1p0 π

- Representative of the CC QE interaction mode
 - important exclusive channel for understanding multiple processes relevant to neutrino-nucleus scattering (FSI, nuclear effects)
- High-purity event selection is in place

- • ${}^{\nu_{\mu}}_{\nu_{\mu}}$ Early^{*n*}data will have enough statistic ${}^{\nu_{\mu}}_{\nu_{\mu}}$ for double-differential measurements
- Full dataset will enable N-differential measurements for a full survey of interaction phase space

selection efficiency 38%, over 200k events/year!

 ν_{μ} CC 1p0 π

- Representative of the CC QE interaction mode
 - important exclusive channel for understanding multiple processes relevant to neutrino-nucleus scattering (FSI, nuclear effects)
- High-purity event selection is in place

- • ${}^{\nu_{\mu}}_{\nu_{\mu}}$ Early data will have enough statistic ${}^{\nu_{\mu}}_{\nu_{\mu}}$ for double-differential measurements
- • ${}^{\nu_{\mu}}$ Full dataset will enable N-differential measurements for a full survey of interaction phase space

 ν_{μ} CC 1p0 π

 v_{μ} CC QE

 v_{μ} CC MEC

 v_{μ} CC RES

 v_{μ} CC SIS/DIS

0.6

 $\times 10^4$

4

Events (POT=3 × 10²⁰)

0

0.0

0.2

0.4

 δp_T [GeV/c]

- Kinematics on the plane transverse to the neutrino direction are useful probes of nuclear effects
 - transverse kinematic imbalance (TKI), implies background interactions or nuclear effects

ν_μ CC COH

cosmic

other

SBND Simulation

Work in Progress

0.8

1.0

NC

 $\times 10^{4}$

 $\times 10^{20}$)

Events (POT=3

0

0.0

 v_{μ} CC QE

 v_{μ} CC MEC

 v_{μ} CC RES

SBND Simulation

Work in Progress

0.5

1.0

 v_{μ} CC SIS/DIS

M. Jung | NuINT 2024 | April 17, 2024

1.5

 $\delta \alpha_T$ [rad]

2.0

ν_μ CC COH

cosmic

other

NC

 ν_{μ} CC 1p0 π

M. Jung | NuINT 2024 | April 17, 2024

Summary

- Neutrino interaction measurements are a key part of the SBND physics program
- SBND has unique capabilities to enable excellent cross section measurements
 - will collect an order of magnitude more neutrino-argon scattering data than what is currently available
 - unique detector, reconstruction, and analysis capabilities will decrease the systematic uncertainties
 - uses both GENIE and GiBUU as event-by-event generators
- SBND has a rich cross section program
 - active analysis work targeting the more dominant final state topologies for early data
 - v_{μ} CC inclusive (μ + X), v_{μ} 1p0 π (μ + p), v_{e} CC inclusive (e + X)
 - long list of other topologies to shortly follow
 - $v_{\mu} \text{ Np0}\pi (\mu + \text{Np}), \text{ N} > 1, \text{ NC } 1\pi^{0} (\pi^{0} + \text{Np}), v_{\mu} \text{ CC } 1\pi^{0} (\mu + \pi^{0} + \text{Np}), \dots$
- SBND data is near stay tuned!

Thank you!

262 Total Collaborators

210 Scientific Collaborators (faculty/scientists, postdocs, PhD students)

40 Institutions

5 Brazilian Universities CERN

Spanish University, 1 National Laboratory
Swiss University

8 UK Universities, 1 National Laboratory18 US Universities, 4 National Laboratories

SBND Collaboration Meeting December 2023

Additional Slides

Off-axis Flux Effect (SBND-PRISM)

- v_{μ} and v_{e} flux has different off-axis effect due to the production mechanisms
 - enable analyses such as v_{μ}/v_e cross section measurements and study of lepton mass effects

$$\begin{split} \mu^+ &\rightarrow \nu_e + \bar{\nu}_\mu + e^+ \\ K^+ &\rightarrow \nu_e + e^+ + \pi^0 \\ K^0_L &\rightarrow \nu_e + e^+ + \pi^- \end{split}$$

$$\begin{array}{l} \pi^+ \rightarrow \nu_\mu \ + \mu^+ \\ K^+ \rightarrow \nu_\mu \ + \mu^+ \end{array}$$

Proton Multiplicity Prediction

- GENIE v3_00_6 G18_10a_02_11a
- GiBUU-2021

Neutrino Energy Reconstruction

- Select QE-like sample by requiring low momentum imbalance
 - rejects non-QE interaction events that undergo large nuclear effects
 - with this additional selection, we obtain a sample with QE purity 95%, 1p0pi purity 93%
- Candidate for an exclusive channel approach to v_{μ} disappearance oscillation search
 - neutrino energy reconstruction is important, even for multi-detector searches

