

RDWIA Analysis of Final-state interactions and MicroBooNE data

Alexis Nikolakopoulos NuINT 2024, Instituto Principia, São Paulo, Brazil 17th April 2024

Collaborators

Anthony M. Kelly (Fermilab, Notre-Dame)
Raul Gonzalez-Jimenez (UCM)
Noemi Rocco (Fermilab)
Josh Isaacson (Fermilab)
Kajetan Niewczas (UGent)
Federico Sanchez (Geneva)

Useful inputs: Noah Steinberg, A. Papadopoulou, A. Ankowski, N. Jachowicz, Ryan Plestid (Caltech), J. M. Udias (UCM), V. Pandey

What?

- Distorted wave calculations with realistic nuclear spectral functions
- Benchmarking of cascade models with optical potentials
- Comparison with MicroBooNE data

Object and scope

- Assess effect of FSI and differences between intranuclear cascade models (INCs)
 - → We use NuWro, NEUT, and ACHILLES INCs
 - → Benchmarking of INCs with quantum-mechanical optical potential calculations with consistent realistic inputs
- Unfactorized RDWIA calculations with realistic nuclear spectral functions
 - → Include smearing and partial occupancies + SRC contribution
 - → Optical potential results consistent with analyses of (e,e'p)
- Application to MicroBooNE data for transverse kinematic imbalance

RDWIA calculations with spectral functions

See: [J. M. Franco-Patino et al. PRD 109, 013004] & [R. Gonzalez-Jimenez et al. PRC 105, 025502]

-Relativistic Distorted Wave Impulse Approximation (RDWIA)

$$\mathcal{J}_{\kappa}^{m_{j}}(Q, P_{N}) = \int d\mathbf{p} \ \overline{\psi}(\mathbf{p} + \mathbf{q}, \mathbf{k}_{N}, s_{N}) \ \mathcal{O}^{\mu} \ \psi_{\kappa}^{m_{j}}(\mathbf{p})$$

Distorted wave function for final-state

-Relativistic Distorted Wave Impulse Approximation (RDWIA)

$$\mathcal{J}_{\kappa}^{m_j}(Q, P_N) = \int d\mathbf{p} \ \overline{\psi}(\mathbf{p} + \mathbf{q}, \mathbf{k}_N, s_N) \ \mathcal{O}^{\mu} \ \psi_{\kappa}^{m_j}(\mathbf{p})$$

- Relativistic Plane Wave Impulse Approximation (RPWIA)

$$\mathcal{J} = (2\pi)^{3/2} \ \overline{u}(\mathbf{k}_N, s_N) \ \mathcal{O}^{\mu} \ \psi_{\kappa}^{m_j}(\mathbf{k}_N - \mathbf{q})$$

By treating the final-state wavefunction as a plane-wave:

$$\overline{\psi}(\mathbf{p}, \mathbf{k}_N, s_N) \to (2\pi)^{3/2} \delta(\mathbf{p} - \mathbf{k}_N) \overline{u}(\mathbf{k}_N, s_N)$$

Neglect all final-state interactions

-Relativistic Distorted Wave Impulse Approximation (RDWIA)

$$\mathcal{J}_{\kappa}^{m_j}(Q, P_N) = \int d\mathbf{p} \ \overline{\psi}(\mathbf{p} + \mathbf{q}, \mathbf{k}_N, s_N) \ \mathcal{O}^{\mu} \ \psi_{\kappa}^{m_j}(\mathbf{p})$$

- Relativistic Plane Wave Impulse Approximation (RPWIA)

$$\mathcal{J} = (2\pi)^{3/2} \ \overline{u}(\mathbf{k}_N, s_N) \ \mathcal{O}^{\mu} \ \psi_{\kappa}^{m_j}(\mathbf{k}_N - \mathbf{q})$$

- Plane-Wave Impulse Approximation (PWIA)

The initial state is assumed proportional to a positive-energy spinor:

$$\psi_{\kappa}^{m_j}(\mathbf{p}) \propto f(|\mathbf{p}|)u(\mathbf{p})$$

One obtains a factorized expression ('spectral function approach')

$$\frac{d\sigma(E_{\nu})}{dp_{\mu}d\Omega_{\mu}d\Omega_{\rho}dp_{N}} = \frac{G_{F}^{2}\cos^{2}\theta_{c}}{(2\pi)^{2}} \frac{p_{\mu}^{2}p_{N}^{2}}{E_{\nu}E_{\mu}} \frac{M_{N}^{2}}{E_{N}\overline{E}} L_{\mu\nu}h_{s.n.}^{\mu\nu} S(E_{m}, p_{m})$$

-Relativistic Distorted Wave Impulse Approximation (RDWIA)

Remove elastic FSI

Relativistic Plane Wave Impulse Approximation (RPWIA)

Project onto particle spinors

- Plane-Wave Impulse Approximation (PWIA)

Remember

- All approaches use the same initial state (~spectral function) but different approximations for the matrix element → consistently check effect of FSI
 - The difference between PWIA and RPWIA is practically negligible for following results

- Energy-Dependent Relativistic Mean-Field (ED-RMF)

$$\overline{\psi}(\mathbf{p}+\mathbf{q},\mathbf{k}_N,s_N)$$

Final-state in real Energy-Dependent potential
 → suitable for FSI in inclusive cross section

- Relativistic Optical Potential (ROP)

$$\overline{\psi}(\mathbf{p}+\mathbf{q},\mathbf{k}_N,s_N)$$

Final-state in **complex** energy-dependent potential → suitable for **FSI** in **exclusive** cross section

-'Standard' approach for FSI in exclusive (e,e'p) analysis in mean-field region

Including recent Jlab analyses of ⁴⁰Ar & ⁴⁸Ti [PRD 107, 012005] [PRD 105, 112002]

- Relativistic Optical Potential (ROP)

$$\overline{\psi}(\mathbf{p}+\mathbf{q},\mathbf{k}_N,s_N)$$

Final-state in **complex** energy-dependent potential → suitable for **FSI** in **exclusive** cross section

-'Standard' approach for FSI in exclusive (e,e'p) analysis in mean-field region

Including recent Jlab analyses of ⁴⁰Ar & ⁴⁸Ti [PRD 107, 012005] [PRD 105, 112002]

The optical potential removes nucleon that undergoes inelastic FSI

In neutrino experiments want to describe where the nucleon goes

Where do the protons go ?: Intranuclear Cascade model (INC)

- ED-RMF FSI in inclusive -INC

FSI for relevant (semi-)exclusive channels

- ROP FSI in single exclusive channel

Production of final-state $|X\rangle = |p\rangle|^{39} Ar^*\rangle$

$$|\mathcal{M}|^2 \approx |\sum_{\alpha} \langle \Psi_0 | T_{1b} | \psi_{\alpha} \rangle \langle \psi_{\alpha} | X \rangle|^2, \qquad \text{Restrict to 1-body operator}$$

$$\approx \sum_{\alpha} |\langle \Psi_0 | T_{1b} | \psi_{\alpha} \rangle|^2 |\langle \psi_{\alpha} | X \rangle|^2 \qquad \text{Classical approximation}$$

$$\approx \sum_{\alpha} |\langle \Psi_0 | T_{1b} | \psi_{\alpha} \rangle|^2 P(X | \alpha). \qquad \text{Intranuclear Cascade}$$

Where do the protons go ?: Intranuclear Cascade model (INC)

- ED-RMF FSI in inclusive

-INC

FSI for relevant (semi-)exclusive channels

- ROP FSI in single exclusive channel

Production of final-state $|X\rangle = |p\rangle|^{39} Ar^*\rangle$

$$|\mathcal{M}|^2 \approx \boxed{|\sum_{\alpha} \langle \Psi_0 | T_{1b} | \psi_\alpha \rangle \langle \psi_\alpha | X \rangle|^2}, \quad \longrightarrow \quad \text{Restrict to 1-body operator}$$

$$\approx \sum_{\alpha} |\langle \Psi_0 | T_{1b} | \psi_\alpha \rangle|^2 |\langle \psi_\alpha | X \rangle|^2 \quad \longrightarrow \quad \text{Classical approximation}$$

$$\approx \boxed{\sum_{\alpha} |\langle \Psi_0 | T_{1b} | \psi_\alpha \rangle|^2} P(X | \alpha) \quad \longrightarrow \quad \text{Intranuclear Cascade}$$

$$\text{INC}$$

Can benchmark the INC with ROP using inputs with same nuclear model For direct proton knockout

Benchmarking intranuclear cascade models for neutrino scattering with relativistic optical potentials

A. Nikolakopoulos , ^{1,2,*} R. González-Jiménez , ³ N. Jachowicz, ¹ K. Niewczas, ^{1,4} F. Sánchez , ⁵ and J. M. Udías , ³

Input to the INC

Fully differential events from RDWIA or RPWIA For 1µ1p

Cuts on the INC results

Single proton events where proton does not lose Energy → no inelastic FSI

Benchmarking intranuclear cascade models for neutrino scattering with relativistic optical potentials

A. Nikolakopoulos , ^{1,2,*} R. González-Jiménez , ³ N. Jachowicz, ¹ K. Niewczas, ^{1,4} F. Sánchez , ⁵ and J. M. Udías , ³

Flux-folded with T2K ND flux: NEUT INC

ROP and INC agree at large T_p but large disagreement for small T_p

[In preparation]

- Flux-folded results for MicroBooNE
- ACHILLES, NEUT, and NuWro INC models
- Large set of kinematic distributions
- Detailed comparisons in backup slides

Some findings:

- Agreement depends on input calculation (ED-RMF ↔ RDWIA)
- Large differences between INCs (low $T_{_{\rm p}}$ & treatment of correlations)
- No full agreement between any INC and ROP

[In preparation]

Comparison of T_p dependence in different INCs

Ratio **OUT/INPUT**

- → independent of INPUT in INC
- = 'INC Transparency'

No full agreement with ROP

Ratio depends on INPUT!

- EDRMF
- - RPWIA

[In preparation]

Comparison of T_p dependence in different INCs

Ratio **OUT/INPUT**

- → independent of INPUT in INC
- = 'INC Transparency'
- NEUT & ACHILLES:
 - Low-T_p differences
- NuWro & ACHILLES:
 - Treatment of SRCs

[In preparation]

Effect of SRC treatment in INC

SRC in INC increase the transparency

- Larger effect in NuWro
- Masked by formation-time in ACHILLES
- NuWro w/o SRC and nominal ACHILLES agree

No full agreement with ROP

- ROP has no 'explicit' SRC
 - → Treats wavefunctions consistently
 - → Decrease in ratio with SRC (depends on input!)

[In preparation]

Effect of SRC treatment in INC

- SRC in INC increase the transparency
- Larger effect in NuWro
- Masked by formation-time in ACHILLES
- NuWro w/o SRC and nominal ACHILLES agree
- No full agreement with ROP
- ROP has no 'evnlicit' SRC

ROP is used in analyses to determine spectral function

No definite benchmark/uncertainty on INC or ROP for lepton scattering

 \rightarrow New (e,e'p) datasets with E_m cuts?

RDWIA calculations with spectral functions

See: [J. M. Franco-Patino et al. PRD 109, 013004] & [R. Gonzalez-Jimenez et al. PRC 105, 025502]

RDWIA calculations with spectral functions for MicroBooNE

$$L_{\mu\nu} \left\{ \sum_{\kappa} N_{\kappa} \rho_{\kappa}(E_m) H_{\kappa}^{\mu\nu}(Q, P_N) + \rho_{corr}(E_m) H_{corr}^{\mu\nu}(Q, P) \right\}$$

Choices of N_{κ} and $\varrho(E_{m})$

- ⁴⁰Ar spectral functions [Butkevich PRC 85, 065501]
 & [Jlab, PRD 107, 012005]
- ⁴⁸Ti from Jlab
 [PRD 107, 012005]
- ⁵⁶Fe [Benhar et al. NPA 579, 493]
- ⁴⁰Ca
 [Butkevich PRC 85, 065501]

Large variation in E_m profiles to check sensitivity of observables

Sensitivity to variations in the spectral functions: PWIA calculations

Observables for MicroBooNE flux-averaged signal

-Negligible differences between different spectral-functions for observables that do not correlate $p_{_{p}}$ and $p_{_{\mu}}$

Sensitivity to variations in the spectral functions: PWIA calculations

- -Negligible differences between different spectral-functions for observables that do not correlate $\rho_{_p}$ and $\rho_{_\mu}$
- -dP_⊤ is sensitive to momentum distribution
- → Almost **universal** for realistic spectral functions
- → Titanium is the outlier!

Sensitivity to variations in the spectral functions

Checking detailed dependence on SF for 40Ar in [J.M F-P et al. PRD 109 013004]

We conclude that for MicroBooNE data the ⁴⁰Ar RMF choice is realistic enough

→ Subdominant to FSI effects

Data not sensitive to missing-energy profile But reconstructed energy is → [R. Gonzalez-Jimenez et al. PRC 105 025502]

RDWIA calculations for MicroBooNE data

[In preparation]

- Differences between INC become smaller with proton kinematic cuts MicroBooNE
- RPWIA → ED-RMF consistent ~10% reduction
- Overall underprediction of data expected: no higher energy interactions (2p2h, SPP, ...)
- Underprediction of low-dP_T
 - Axial form factor ?
 - → Interference with 2-body?
 - → Remove correlations?

RDWIA calculations for MicroBooNE data

[In preparation]

Double differential in dP_{τ} and α_{τ}

→ effect of FSI is clear

Picture remains:

- 10% reduction in MF region in ED-RMF
- -Underprediction high $\alpha_{\scriptscriptstyle T}$
- → expected
- -Low- α_{T} and dPT???

RDWIA calculations for MicroBooNE data

[In preparation]

Double differential in dP_{τ} and α_{τ}

→ effect of FSI is clear

Picture remains: Underprediction high $\alpha_{\scriptscriptstyle T}$

→ expected

Low- α_{T} ???

- -Composition of signal
- → INC dependent
- → Significant contribution of Inelastic events

→ Could be removed with
 electron scattering with E_m cut

Conclusions and outlook

- Detailed comparison of NEUT, ACHILLES, NuWro INCs with optical potentials
 - No full agreement of any INC with the optical potential
 - Differences in low- $T_{_{D}}$ region and due to treatment of SRC's
 - \rightarrow (e,e'p) over large hadron phase space with cut on E_m ?
 - → Assessment of the classical approximation underlying the INC
- RDWIA results with realistic spectral functions for scattering on ⁴⁰Ar
 - Constructed consistently with description for (e,e'p) and (e,e')
 - Small dependence on choice of *realistic* spectral function
 - RDWIA leads to ~ 10 % reduction compared to typical PWIA
 - General underprediction of data in the low-dP $_{\scriptscriptstyle T}$ region
 - → Include interference with 2-body currents e.g [T Franco-Munoz et al. PRC 108 064608] [Lovato et al arxiv:2312.12545]
 - → Measurements sensitive to the missing-energy distribution ? e.g. [Baudis et al arxiv:2310.15633]

Other stuff

NuWro with SRC effect in Mean-free path

NuWro without SRC effect in Mean-free path

ACHILLES with Formation time

ACHILLES without Formation time

NEUT

