

Centro Brasileiro de Pesquisas Físicas

Charge-current v_{μ} and \bar{v}_{μ} cross sections on hydrocarbon in the shallow inelastic scattering region

NuINT 2024, 14th International Workshop on Neutrino-Nucleus Interactions

Adrian Lozano Sánchez*

*Now at Drexel University

April 18, 2024

Expanding the definition of Shallow Inelastic Scattering (SIS)

- SIS is nonresonant meson production as well as the region where Q² increases and interactions take place within the nucleon (Q² ≥ 1 GeV²). This means it also extends into the experimental "DIS" region.
- The SIS domain then includes multi-quark interactions within the nucleon until the region Q² ~ 4 GeV² where single-quark interactions are used for the determination of parton distribution function. See Jorge's talk tomorrow
- For MINERvA, the SIS region is defined experimentally as inclusive meson production in the region $1.5 < W_{exp} < 2$ GeV, with and without a Q² > 1 GeV² cut.
- The Q² > 1 GeV² cut is to emphasize the multi-quark component of SIS.
- This includes nonresonant meson production, resonant meson production, SIS quark-fragmented meson production, and the interference between them.
- $\circ~W_{exp}$ is the invariant mass of the hadronic system, assuming the target nucleon is at rest:

$$(W_{exp} = \sqrt{M_N^2 + 2E_{had}M_N - Q^2}).$$

Importance of the SIS Measurements

- MC neutrino event generators predict different neutrino cross sections for this SIS experimental region.
- A detailed study is very necessary to reduce systematic uncertainty for oscillation experiments. For example, DUNE expects more than 45% of events with W > 1.5 GeV.
- This is the first measurement of the neutrino/antineutrino cross sections of this SIS experimental region since low statistics bubble chamber experiments 40 years ago.

Experimental Setup

Adrian Lozano Sánchez (Drexel University/CBPF)

Simulation

GEANT4 simulates the flux.

- Hadron production models are constrained using external data.
- The flux uncertainty is reduced from 7.6% (7.8%) to 3.3% (4.7%) for v_{μ} (\bar{v}_{μ}) using $v_{\mu} + e$ and inverse muon decay constraints (*Phys. Rev. D* 107, 012001 (2023)). See Luis's talk on Tuesday

o GENIE 2.12.6 simulates the neutrino interactions.

- Neutrino event generator
 - Handles all nuclear targets and neutrino flavors.
 - Processes from MeV to PeV energy scales.
- Neutrino interactions
 - Quasielastic → Llewellyn-Smith formalism
 - Resonance production \rightarrow Rein-Sehgal single π model
 - SIS and DIS → Bodek-Yang model

• GEANT4 4.9.3.p6 models the final state particle interactions in the detector.

MINERvA Tuning of Rein-Sehgal and Bodek-Yang models

This tune is called MINERvA Tune v2 and used in this analysis. The relevant part for SIS is in red

- QE events simulation was improved by including the random phase approximation (RPA).
 Phys. Rev. C 70, 055503 (2004), *arXiv:1705.02932 (2017)*
- Valencia model to simulate 2p2h.
 - 2p2h model enhanced by fitting the simulation with the data in the low recoil analyses. *Phys. Rev. Lett.* 116, 071802 (2016)
- Nonresonant pion production was reduced by 43% using datasets of neutrino-deuterium cross sections. This is a modification of the Bodek-Yang model for W < 2 GeV.
 Eur. Phys. J. C 76, 474 (2016)
- Low Q² resonant suppression. The tuning was performed using data from MINERvA pion production measurements on hydrocarbon.

Phys. Rev. D 100, 072005 (2019)

How do we extract a cross section?

$$\begin{pmatrix} \frac{d\sigma}{d\beta} \end{pmatrix}_{i} = \frac{1}{T_{n} \Phi \Delta \beta_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bkg} \right)}{\epsilon_{i}}$$
We measure the cross section as a function of \mathbf{Q}^{2} , $\mathbf{p}_{T\mu}$, $\mathbf{p}_{\parallel\mu}$, **X**, $\boldsymbol{\xi}$

Kinetic Variables

•
$$E_{\nu} = E_{had} + E_{\mu}$$

•
$$Q^{2} = 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^{2}$$

•
$$W = \sqrt{M_{N}^{2} + 2E_{had}M_{N} - Q^{2}}$$

•
$$W = \sqrt{M_N^2 + 2E_{had}M_N} - \frac{1}{2}$$

•
$$p_{T\mu} = p_{\mu} \sin \theta_{\mu}$$

•
$$p_{\parallel\mu} = p_{\mu} \cos \theta$$

• $\mathbf{v} = \frac{Q^2}{Q^2}$

$$\sim 2M_{\rm N}E_{\rm had}$$

- The p muon variables are less sensitive to the hadron system systematic.
- MINERvA has done this for several analyses.

- Nachtmann variable corrects the Bjorken x distribution for target mass effects.
- We want to use x and ξ to understand how this grows into the DIS region.
- Both can be used to test duality. See Jorge's talk tomorrow

Event Selection

Signal Definition

- $v_{\mu}(\bar{v}_{\mu})$ CC
- $1.5 < W_{exp} < 2 \text{ GeV}$
- $\theta_{\mu} < 20^{\circ}$ wrt beam
- 2 < E_µ < 20 GeV

Event Selection

- Muon track in MINERvA that matches with a track in MINOS
- 1.5 < W_{exp} < 2 GeV
- Quality cuts

- E_{had} is reconstructed calorimetrically from the visible energy of all clusters that are not part of the muon track.
- A correction is applied to compensate for the loss of visible energy.

Selected Sample (Neutrino)

• The sample purity is 66% (53%) for $Q^2 > 0$ GeV² ($Q^2 > 1$ GeV²).

Events / 0.05 (GeV/c)²

Adrian Lozano Sánchez (Drexel University/CBPF)

 $1.5 < \text{Reco } W_{\text{exp}} < 2 \text{ GeV}$

Non-SIS Background

- Remember, MINERvA SIS signal region is defined as $1.5 < \text{Reconstructed } W_{\text{exp}} < 2 \text{ GeV}.$
- We want to subtract events that aren't truly signal events but have been smeared into the signal region.
- The data outside the signal region is used to constrain the MC to the data.
- $\circ~$ The regions used for the constraint are called sidebands.
- The sidebands are separated into kinematic regions:
 True W_{exp} < 1.15 GeV → is mainly experimental QE
 1.15 < True W_{exp} < 1.5 GeV → is mainly experimental resonance

True $W_{exp} > 2 \text{ GeV}$ \rightarrow is mainly experimental DIS

Non-SIS Background

- \circ A χ^2 minimization fit is used to extract weight functions that tune the MC sideband to data.
- Q² was the variable to perform the fit and fix the data MC discrepancy for other variables.

$$\chi^{2} = \sum_{s} \sum_{i} \frac{\left(N_{s,i}^{MC} - N_{s,i}^{Data}\right)^{2}}{N_{s,i}^{Data}} \qquad s = \{QE \text{ rich, RES rich, DIS rich}\} \qquad i \rightarrow Q^{2} \text{ bins}$$
$$N_{s,i}^{MC} = \mathbf{f_{0}} N_{s,i}^{W < 1.15} + \mathbf{f_{1}} N_{s,i}^{1.15 < W < 1.5} + \mathbf{f_{2}} N_{s,i}^{W > 2} + N_{s,i}^{Signal}$$

The pink band is the MC systematics

Non-SIS Background (Neutrino) $\left(\frac{d\sigma}{dx}\right)_{i} = \frac{1}{T_{n}\Phi\Delta X_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{data} - N_{j}^{bkg}\right)}{\epsilon_{i}}$

 \circ We have brought the MC prediction to the data.

Adrian Lozano Sánchez (Drexel University/CBPF)

SIS Sample (Neutrino)

• The weight functions are applied to the background in the signal region.

Adrian Lozano Sánchez (Drexel University/CBPF)

SIS Background-Subtracted Sample (Neutrino)

• The tuned simulated background is subtracted bin-by-bin from the sample.

Adrian Lozano Sánchez (Drexel University/CBPF)

 $\frac{1}{T_{n}\Phi\Delta X_{i}}\frac{\sum_{j}U_{ij}\left(\mathbf{N}_{j}^{data}-\mathbf{N}_{j}^{bkg}\right)}{\epsilon}$

 $\left(\frac{d\sigma}{dX}\right)_i$

Unfolding

- We need to correct the distortion and smearing caused by physical effects, detector resolution and detector imperfections.
- The MINERvA collaboration uses the iterative D'Agostini method and is implemented in the RooUnfold framework.
- A study was performed to determine how many iterations are required to recover the original distribution:
 - Fake data based on data MC disagreement.
 - Fake data based on physics model disagreement.

Efficiency and Normalizations

- The selection efficiency is the fraction of simulated signal events that were detected and selected by the analysis selection cuts.
- Efficiency decreases with the increasing of the angle due to MINOS acceptance.
- Average selection efficiency:
 - 30% (35% $\bar{\nu}_{\mu}$) for Q² > 0 GeV²
 - 17% (19% \bar{v}_{μ}) for Q² > 1 GeV²
- Integrated flux ($0 \le E_{\nu} \le 120 \text{ GeV}$).
- \circ 3.23 x 10³⁰ nucleons in the fiducial volume.

o Bin width.

Uncertainties

- Flux + Mass (~3-9%)
 - Flux (~3.3% (~4.7% $\bar{\nu}_{\mu}$) at focusing peak)
 - Mass (1%)
- Interaction Models (~2-6%)
 - Cross section models that GENIE uses
 - Dominates by M_A^{RES} , M_V^{RES} , M_A^{CCQE}
- Detector Response (~1-8%)
 - $E_{\mu}, \theta_{\mu}, E_{had}$
- Matching Efficiency (~1-2%)
- o FSI Models (~1%)
 - Final state interactions simulated in GENIE
- MC Statistics (~0.5-1%)

Cross Section (Neutrino)

Resonant and DIS components dominate in this SIS range of W.

Adrian Lozano Sánchez (Drexel University/CBPF)

Cross Section Ratios (Neutrino)

• Resonant and DIS components dominate in this SIS range of W.

Adrian Lozano Sánchez (Drexel University/CBPF)

Cross Section (Antineutrino)

Resonant and DIS components dominate in this SIS range of W.

Adrian Lozano Sánchez (Drexel University/CBPF)

Cross Section Ratios (Antineutrino)

• Resonant and DIS components dominate in this SIS range of W.

Adrian Lozano Sánchez (Drexel University/CBPF)

Model Comparison

• Genie 3.0.6

- LFG is the Local Fermi Gas model as the nuclear ground state
- RFG is the Relativistic Fermi Gas model as the nuclear ground state
- hA is an effective intranuclear transport model

• NEUT 5.4.1

LFG is the Local Fermi Gas model as the nuclear ground state

NuWro 19.02

 LFG is the Local Fermi Gas model as the nuclear ground state

o GiBUU 2021

• T0 scales the amount of 2p2h process

Model Comparison (Neutrino)

• None of the simulation programs describe the data across the full kinematic region for all considered variables.

Adrian Lozano Sánchez (Drexel University/CBPF)

Model Comparison (Antineutrino)

• None of the simulation programs describe the data across the full kinematic region for all considered variables.

Adrian Lozano Sánchez (Drexel University/CBPF)

Conclusions

- First high-statistics measurement of SIS neutrino cross sections.
- Performed measurement of SIS cross section in neutrino and antineutrino as a function of Q^2 , $p_{T\mu}$, $p_{\parallel\mu}$, x and ξ.
- MINERvA Tune v2 does not describe the SIS measurements across the full kinematic region:
 - Good agreement at low Q^2 and $p_{T\mu}$ for neutrinos.
 - The $Q^2 > 1$ GeV² data prefers no nonresonant meson reduction.
 - A less strong suppression of pion production at low Q^2 is suggested for antineutrinos.
- The measurements were compared to other neutrino generator programs.
- These cross sections can be used as a reference for better understanding and modeling of neutrinonucleus scattering physics.
- The results will also help to reduce the systematic uncertainties for neutrino oscillation experiments.

Thank You!

Fermilab

MINERvA Week 2023 Collaboration (12-15 June)

Backup

MINERvA Detector

- High statistics neutrino scattering experiment.
- Measurements of neutrino interactions on various nuclei at 1-50 GeV in the NuMI beam.
- Study of nuclear effects in neutrino interactions.

Triangular strips arranged to give a better position resolution

- Different targets (He, C, Fe, Pb, H₂O, CH).
- Calorimeters: ECAL (Pb and CH sheets) and HCAL (steel and CH sheets).
- MINOS spectrometer: muon momentum and charge.

Selected Sample (Antineutrino)

• The sample purity is 69% (55%) for $Q^2 > 0$ GeV² ($Q^2 > 1$ GeV²).

Adrian Lozano Sánchez (Drexel University/CBPF)

 $1.5 < \text{Reco } W_{\text{exp}} < 2 \text{ GeV}$

Non-SIS Background, Weight Functions

Neutrino

Adrian Lozano Sánchez (Drexel University/CBPF)

Non-SIS Background (Antineutrino)

 \circ We have brought the MC prediction to the data.

Adrian Lozano Sánchez (Drexel University/CBPF)

 $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}X}\right)_{i} = \frac{1}{\mathrm{T}_{\mathrm{n}}\Phi\Delta X_{i}} \frac{\sum_{j} \mathrm{U}_{ij}\left(\mathrm{N}_{j}^{\mathrm{data}} - \mathrm{N}_{j}^{\mathrm{bkg}}\right)}{\epsilon_{i}}$

SIS Sample (Antineutrino)

• The weight functions are applied to the background in the signal region.

Adrian Lozano Sánchez (Drexel University/CBPF)

SIS Background-Subtracted Sample (Antineutrino)

• The tuned simulated background is subtracted bin-by-bin from the sample.

 $= \frac{1}{T_{n} \Phi \Delta X_{i}} \frac{\sum_{j} U_{ij} \left(N_{j}^{\text{data}} - N_{j}^{\text{bkg}} \right)}{\epsilon_{i}}$

 $\left(\frac{d\sigma}{dX}\right)_i$

Adrian Lozano Sánchez (Drexel University/CBPF)